OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 18 — Sep. 15, 1989
  • pp: 3950–3959

Design of a wide field diffractive landscape lens

Dale A. Buralli and G. Michael Morris  »View Author Affiliations

Applied Optics, Vol. 28, Issue 18, pp. 3950-3959 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1071 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The third-order aberrations of a diffractive optical element with paraxial zone spacings are derived as a function of aperture stop position. It is shown that by placing the stop in the front focal plane, coma and astigmatism are identically zero, assuming an infinitely distant object. In addition, since the element is diffractive, the Petzval sum is also zero. Modulation transfer function comparisons with other lenses are given. The correction of spherical aberration using an aspheric plate located in the aperture stop and nonmonochromatic imaging performance are discussed. The distortion of the resulting system is shown to be the proper amount for use as a Fourier transform lens. An estimate for the space–bandwidth product of this Fourier transform system is given.

© 1989 Optical Society of America

Original Manuscript: February 10, 1989
Published: September 15, 1989

Dale A. Buralli and G. Michael Morris, "Design of a wide field diffractive landscape lens," Appl. Opt. 28, 3950-3959 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kamiya, “Theory of Fresnel Zone Plate,” Sci. Light 12, 35–49 (1963).
  2. R. W. Meier, “Magnification and Third-Order Aberrations in Holography,” J. Opt. Soc. Am. 55, 987–992 (1965).
  3. E. B. Champagne, “Nonparaxial Imaging, Magnification, and Aberration Properties in Holography” J. Opt. Soc. Am. 57, 51–55 (1967). [CrossRef]
  4. M. Young, “Zone Plates and Their Aberrations,” J. Opt. Soc. Am. 62, 972–976 (1972). [CrossRef]
  5. W. C. Sweatt, “Describing Holographic and Optical Elements as Lenses,” J. Opt. Soc. Am. 67, 803–808 (1977). [CrossRef]
  6. W. A. Kleinhans, “Aberrations of Curved Zone Plates and Fresnel Lenses,” Appl. Opt. 16, 1701–1704 (1977). [CrossRef] [PubMed]
  7. S. T. Bobrov, Yu. G. Turkevich, “Method of Calculating the Wave Aberrations of Complex Holographic Systems,” Opt. Spectrosc. USSR 46, 555–557 (1979).
  8. M. A. Gan, “Third-Order Aberrations and the Fundamental Parameters of Axisymmetrical Holographic Elements,” Opt. Spectrosc. USSR 47, 419–422 (1979).
  9. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969). [CrossRef]
  10. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform Lenses,” Appl Opt. 9, 1883–1887 (1970). [PubMed]
  11. D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical Performance of Holographic Kinoforms,” Appl. Opt. 28, 976–983 (1989). [CrossRef] [PubMed]
  12. W. T. Welford, Abberations of Optical Systems (Hilger, Bristol, 1986), pp. 226–234.
  13. Reference 12, pp. 130–140.
  14. R. Kingslake, Lens Design Fundamentals (Academic, Orlando, FL, 1978), p. 113.
  15. Reference 12, pp. 148–152.
  16. Reference 14, pp. 211–215.
  17. Reference 14, pp. 293.
  18. Super-Oslo is a trademark of Sinclair Optics, 6780 Palmyra Rd, Fairport, NY 14450.
  19. F. D. Cruickshank, G. A. Hills, “Use of Optical Aberration Coefficients in Optical Design,” J. Opt. Soc. Am. 50, 379–387 (1960). [CrossRef]
  20. W. T. Welford, “Aplanatic Hologram Lenses on Spherical Surfaces” Opt. Commun. 9, 268–269 (1973);see also W. T. Welford, “Isoplanatism and Holography” Opt. Commun. 8, 239–243 (1973). [CrossRef]
  21. R.W. Smith, “A Flat Field Holographic Lens with no First Order Astigmatism,” Opt. Commun. 19, 245–247 (1976);see also R. W. Smith, “Astigmatism Free Holographic Lens Elements” Opt. Commun. 21, 102–105 (1977);R. W. Smith, “The s and t Formulae for Holographic Lens Elements,” Opt. Commun. 21, 106–109 (1977). [CrossRef]
  22. Reference 12, pp. 152–153.
  23. E. H. Linfoot, “On the Optics of the Schmidt Camera,” Mon. Not. R. Astron. Soc. 109, 279–297 (1949).
  24. Phosphor data taken from “Optical Characteristics of Cathode Ray Tube Screens,” TEPAC Publication 116, published by the EIA Tube Engineering Panel Advisory Council (Dec.1980).
  25. B. A. F. Blandford, “A New Lens System for Use in Optical Data-Processing,” in Optical Instruments and Techniques 1969, J. H. Dickson, Ed. (Oriel, Newcastle upon Tyne, 1970), pp. 435–443.
  26. K. von Bieren, “Lens Design for Optical Fourier Transform Systems,” Appl. Opt. 10, 2739–2742 (1971). [CrossRef] [PubMed]
  27. Reference 12, pp. 93–98.
  28. M. Reiss, “The cos4 Law of Illumination,” J. Opt. Soc. Am. 35, 283–288 (1945). [CrossRef]
  29. I. C. Gardner, “Validity of the Cosine-Fourth-Power Law of Illumination,” J. Res. Natl. Bur. Stand. 39, 213–219 (1947). [CrossRef]
  30. M. Reiss, “Notes on the cos4 Law of Illumination,” J. Opt. Soc. Am. 38, 980–986 (1948). [CrossRef] [PubMed]
  31. Reference 12, pp. 241–246.
  32. Y. Matsui, S. Minami, S. Yamaguchi, “Fourier Transform Lens System,” U.S. Patent4,189,214 (19Feb.1980).
  33. Reference 12, p. 244.
  34. Reference 12, p. 116.
  35. J. Kedmi, A. A. Friesem, “Optimal Holographic Fourier-Transform Lens,” Appl. Opt. 23, 4015–4019 (1984). [CrossRef] [PubMed]
  36. A. W. Lohmann, “Parallel Interfacing of Integrated Optics with Free-Space Optics” Optik 76, 53–56 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited