OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 2 — Jan. 15, 1989
  • pp: 311–324

Massive holographic interconnection networks and their limitations

Joseph Shamir, H. John Caulfield, and R. Barry Johnson  »View Author Affiliations


Applied Optics, Vol. 28, Issue 2, pp. 311-324 (1989)
http://dx.doi.org/10.1364/AO.28.000311


View Full Text Article

Enhanced HTML    Acrobat PDF (1980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fundamental and practical limitations to be encountered in the implementation of massive free space optical interconnects are discussed in detail, and some improved architectures are proposed. The long term optimum design uses currently unavailable large arrays of laser diodes. An interim solution, using available spatial light modulators, is shown to be capable of storing ~1010 bits of information and performing ~1011 interconnections/s.

© 1989 Optical Society of America

History
Original Manuscript: March 2, 1988
Published: January 15, 1989

Citation
Joseph Shamir, H. John Caulfield, and R. Barry Johnson, "Massive holographic interconnection networks and their limitations," Appl. Opt. 28, 311-324 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-2-311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. I. Leonberger, S. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984). [CrossRef]
  2. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947 (1987). [CrossRef] [PubMed]
  3. E. Marom, N. Konforti, “Dynamic Optical Interconnections,” Opt. Lett. 12, 539 (1987). [CrossRef] [PubMed]
  4. Ho-In Jeon, A. A. Sawchuk, “Optical Crossbar Interconnections Using Variable Grating Mode Devices,” Appl. Opt. 26, 261 (1987). [CrossRef] [PubMed]
  5. J. Shamir, H. J. Caulfield, “High-Efficiency Rapidly Programmable Optical Interconnections,” Appl. Opt. 26, 1032 (1987). [CrossRef] [PubMed]
  6. K. M. Johnson, M. R. Surette, J. Shamir, “Optical Interconnection Network Using Polarization Based Ferroelectric Liquid Crystal Gates,” Appl. Opt. 27, 1727 (1988). [CrossRef] [PubMed]
  7. H. J. Caulfield, “Parallel N4 Weighted Optical Interconnections,” Appl. Opt. 26, 4039 (1987). [CrossRef] [PubMed]
  8. K. Wagner, D. Psaltis, “Multilayer Optical Learning Networks,” Appl. Opt. 26, 5061 (1987). [CrossRef] [PubMed]
  9. J. Kinser, H. J. Caulfield, J. Shamir, “A Design for a Massive All-Optical Bidirectional Associative Memory: The Big BAM,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 269 (1988).
  10. H. J. White, W. A. Wright, “Holographic Implementation of a Hopfield Model with Discrete Weightings,” Appl. Opt. 27, 331 (1988). [CrossRef] [PubMed]
  11. P. A. Ambs, Y. Fainman, S. Esner, S. H. Lee, “Holographic Optical Elements for SLM Defect Removal and for Optical Interconnects,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, paper 31 (1988).
  12. P. Ambs, Y. Fainman, S. H. Lee, J. Gresser, “Computerized Design and Generation of Space Variant Holographic Filter,” Proc. Soc. Photo-Opt. Instrum. Eng. 884, 62 (1988).
  13. J.-S. Jang, S.-W. Jung, S.-Y. Lee, S.-Y. Shin, “Optical Implementation of the Hopfield Model for Two-Dimensional Associative Memory,” Opt. Lett. 13, 248 (1988). [CrossRef] [PubMed]
  14. N. H. Farhat, “Architectures for Optoelectronic Analogs of Self-Organizing Neural Network,” Opt. Lett. 12, 448 (1987). [CrossRef] [PubMed]
  15. N. H. Farhat, “Optoelectronic Analogs of Self-Programming Neural Nets: Architecture and Methodologies for Implementing Fast Stochastic Learning by Simulated Annealing,” Appl. Opt. 26, 5093 (1987). [CrossRef] [PubMed]
  16. K. Fukushima, “Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition,” Neural Networks 1, 119 (1988). [CrossRef]
  17. T. Kohonen, “An Introduction to Neural Computing,” Neural Networks 1, 3 (1988). [CrossRef]
  18. J. Ghosh, K. Hwang, “Optically Connected Multiprocessors for Simulating Artificial Neural Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 882, 2 (1988).
  19. S. C. Gustafson, G. R. Little, “Optical Neural Classification for Binary Patterns,” Proc. Soc. Photo-Opt. Instrum. Eng. 882, 83 (1988).
  20. D. Brady, X.-G. Gu, D. Psaltis, “Photorefractive Crystal in Optical Neural Computers,” Proc. Soc. Photo-Opt. Instrum. Eng. 882, 132 (1988).
  21. H. Wagner, R. E. Feinleib, “Competitive Optoelectronic Learning Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 882, 162 (1988).
  22. H. J. White, N. B. Aldridge, I. Lindsay, “Digital and Analog Holographic Associative Memories,” Opt. Eng. 27, 30 (1988). [CrossRef]
  23. N. Duklias, J. Shamir, “Relation between Object Position and Autocorrelation Spots in the VanderLugt Filtering Process. 2: Influence of the Volume Nature of the Photographic Emulsion,” Appl. Opt. 5, 78 (1973).
  24. Y. Tsunoda, Y. Takeda, “High Density Image-Storage Holograms by a Random Phase Sampling Method,” Appl. Opt. 13, 2046 (1974). [CrossRef] [PubMed]
  25. M. Nazarathy, J. Shamir, “Fourier Optics Described by Operator Algebra,” J. Opt. Soc. Am. 70, 150 (1980). [CrossRef]
  26. M. Nazarathy, J. Shamir, “Holography Described by Operator Algebra,” J. Opt. Soc. Am. 71, 529 (1981). [CrossRef]
  27. M. Nazarathy, J. Shamir, “Wavelength Variation in Fourier Optics and Holography Described by Operator Algebra,” Isr. J. Technol. 18, 224 (1980).
  28. Y. Fainman, J. Shamir, “Polarization of Nonplanar Wave Fronts,” Appl. Opt. 23, 3188 (1984). [CrossRef] [PubMed]
  29. M. N. Deeter, D. Sarid, “Effects of Incidence Angle on Readout in Magnetooptic Storage Media,” Appl. Opt. 27, 713 (1988). [CrossRef] [PubMed]
  30. R. Clark, C. Hester, P. Lindberg, “Mapping Sequential Processing Algorithms onto Parallel Distributed Processing Architectures,” Proc. Soc. Photo-Opt. Instrum. Eng. 880, paper 5 (1988).
  31. J.-S. Jang, S.-W. Jung, S.-Y. Lee, S.-Y. Shin, “Optical Implementation of the Hopfield Model for Two-Dimensional Associative Memory,” Opt. Lett. 13, 248 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited