OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 20 — Oct. 15, 1989
  • pp: 4286–4292

Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta

Marleen Keijzer, Rebecca R. Richards-Kortum, Steven L. Jacques, and Michael S. Feld  »View Author Affiliations


Applied Optics, Vol. 28, Issue 20, pp. 4286-4292 (1989)
http://dx.doi.org/10.1364/AO.28.004286


View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence spectra of turbid media depend on the geometry of excitation and collection. The geometry dependence of 476-nm excited fluorescence of the human arterial wall was investigated both experimentally and with a Monte Carlo simulation. Optical properties and the fluorescence yield of each of the three arterial layers were determined. Attenuation of fluorescence by wavelength dependent scattering and reabsorption causes the fluorescence spectra observed at the tissue surface to change with distance from the excitation beam. The ratio of 600-nm fluorescence to 580-nm fluorescence increases significantly beyond the excitation beam. This ratio depends on the amount of oxyhemoglobin in the sample, illustrating how reabsorption can influence autofluorescence measurements. The effects of different excitation/collection geometries on fluorescence spectra are discussed in relation to the design of catheters to differentiate normal and pathologic tissues.

© 1989 Optical Society of America

History
Original Manuscript: April 6, 1989
Published: October 15, 1989

Citation
Marleen Keijzer, Rebecca R. Richards-Kortum, Steven L. Jacques, and Michael S. Feld, "Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-20-4286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kittrell, R. L. Willett, C. de las Santos-Pacheo, N. B. Ratliff, J. R. Kramer, E. G. Malk, M. S. Feld, “Diagnosis of Fibrous Arterial Atherosclerosis Using Fluorescence,” Appl. Opt. 24, 2280–2281 (1985). [CrossRef] [PubMed]
  2. M. Sartori, R. Sauerbrey, S. Kubodera, F. K. Tittel, R. Roberts, P. D. Henry, “Autofluorescence Maps of Atherosclerotic Human Arteries: A New Technique in Medical Imaging,” IEEE J. Quantum Electron. QE-23, 1794–1797 (1987). [CrossRef]
  3. L. I. Deckelbaum, J. K. Lam, H. S. Cabin, K. S. Clubb, M. B. Long, “Discrimination of Normal and Atherosclerotic Aorta by Laser-Induced Fluorescence,” Lasers Surg. Med. 7, 330–335 (1987). [CrossRef] [PubMed]
  4. M. B. Leon et al., “Human Arterial Surface Fluorescence: Atherosclerotic Plaque Identification and Effects of Laser Atheroma Ablation,” J. Am. Coll. Cardiol. 12, 94–102 (1988). [CrossRef] [PubMed]
  5. R. Richards-Kortum et al., “A Model for Extraction of Diagnostic Information from Laser Induced Fluorescence Spectra of Human Artery Wall,” Spectrochim. Acta (in press) 454, 89–93 (1989).
  6. R. Richards-Kortum et al., “Spectral Diagnosis of Atherosclerosis Using an Optical Fiber Laser Catheter,” (submitted).
  7. A. A. Oreavsky, V. S. Letokhov, S. E. Ragimov, V. G. Omel'Yanenko, A. A. Belyaev, B. V. Shekhonin, R. S. Akchurin, “Spectral Properties of Human Atherosclerotic Blood Vessel Walls,” Lasers Life Sci. 2, 275–288 (1988).
  8. R. Richards-Kortum, “Understanding Laser Induced Fluorescence of Human Artery Wall with Applications to Diagnosis of Atherosclerosis,” Master's Thesis, Physics Department, Massachusetts Institute of Technology, Cambridge (1987).
  9. S. L. Jacques, S. A Prahl, “Modeling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987). [CrossRef] [PubMed]
  10. J. H. Joseph, W. J. Wiscombe, “The Delta-Eddington Approximation for Radiative Flux Transfer,” J. Atmos. Sci. 33, 2452–2459 (1976). [CrossRef]
  11. S. A. Prahl, “Light Transport in Tissue,” Ph.D. Thesis, Department of Biomedical Engineering, The University of Texas at Austin (1988).
  12. X. X. Robbins, Pathologic Basis of Disease (WB Saunders, Philadelphia, 1984).
  13. R. R. Anderson, J. A. Parrish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13–19 (1981). [CrossRef] [PubMed]
  14. G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In Vivo Fluorescence Excitation and Emission Spectra of Hematoporphyrin-Derivative,” Lasers Life Sci. 1, 28–48 (1986).
  15. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
  16. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med. 9, 148–154 (1989). [CrossRef] [PubMed]
  17. S. L. Jacques, M. Keijzer, J. P. A. Marijnissen, W. M. Star, “Light Distributions in Phantom Tissues: Theory Meets Experiment,” (submitted Lasers Surg. Med.).
  18. A. N. Witt, “Multiple Scattering in Reflection Nebulae III. Nebulae with Embedded Illuminating Stars,” Astrophys. J. Suppl. 35, 21–29 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited