OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 21 — Nov. 1, 1989
  • pp: 4533–4542

Narrowband gain saturation characteristics in XeF lasers

Wayne D. Kimura, Jonathan F. Seamans, and Dean R. Guyer  »View Author Affiliations


Applied Optics, Vol. 28, Issue 21, pp. 4533-4542 (1989)
http://dx.doi.org/10.1364/AO.28.004533


View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Presented are the gain characteristics of an electron-beam pumped XeF gas mixture (neon diluent) while saturating with either one or two external laser beams whose wavelengths are various combinations of the XeF laser lines (i.e., 351.1, 351.2, and 353.2 nm). Individual saturating beam fluxes ranged from <1 to ≈6 MW/ cm2, with bandwidths of either 4 or 8 GHz. A third broadband UV dye laser probes the laser medium to measure the total XeF gain spectrum during saturation. The electron-beam deposition rate is either 270 or 380 kW/cm3 and the gas temperature is 400 K. The results indicate that rotational coupling within the XeF gain band for each of the laser lines is relatively fast and saturation appears fairly homogeneous. However, vibrational coupling between the laser lines appears to be nonuniform and not as strong. The saturation behavior is relatively insensitive to the saturation beam bandwidths investigated, indicating that efficient narrowband extraction within a gain band may be possible. Due to the weak vibrational coupling, efficient extraction from the XeF manifold probably requires extraction on at least two of the laser lines. Results with neon and argon diluent at 294 K are also presented.

© 1989 Optical Society of America

History
Original Manuscript: October 20, 1988
Published: November 1, 1989

Citation
Wayne D. Kimura, Jonathan F. Seamans, and Dean R. Guyer, "Narrowband gain saturation characteristics in XeF lasers," Appl. Opt. 28, 4533-4542 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-21-4533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Slatkine, I. J. Bigio, B. J. Feldman, R. A. Fisher, “Efficient Phase Conjugation of an Ultraviolet XeF Laser Beam by Stimulated Brillouin Scattering,” Opt. Lett. 7, 108–110 (1982). [CrossRef] [PubMed]
  2. I. V. Tomov, R. Redosejevs, D. C. D. McKen, “High-Efficiency Stimulated Brillouin Scattering of KrF Laser Radiation in SF6,” Opt. Lett. 9, 405–407 (1984). [CrossRef] [PubMed]
  3. J. C. Hsia, J. A. Mangano, J. H. Jacob, M. Rokni, “Improvement in XeF Laser Efficiency at Elevated Temperature,” Appl. Phys. Lett. 34, 208–210 (1979). [CrossRef]
  4. J. A. Blauer, T. T. Yang, C. E. Turner, D. A. Copeland, “Excimer Kinetics and Multiline Model for the Electron-Beam Pumped XeF(B–X) Laser,” Appl. Opt. 23, 4352–4367 (1984). [CrossRef] [PubMed]
  5. W. D. Kimura, S. E. Moody, J. F. Seamans, “F2 Fuel Performance in XeF Lasers at Ambient and Elevated Temperatures,” Appl. Phys. Lett. 49, 255–256 (1986). [CrossRef]
  6. J. B. West, H. Komine, E. A. Stappaerts, “Efficient Injection-Locking of an E-Beam-Excited XeF Laser,” J. Appl. Phys. 52, 5383–5385 (1981). [CrossRef]
  7. W. D. Kimura, D. R. Guyer, J. F. Seamans, D. H. Ford, “Narrowband, Single Line, 1μs XeF Laser,” Appl. Phys. Lett. 51, 1063–1065 (1987). [CrossRef]
  8. W. D. Kimura, S. E. Moody, J. F. Seamans, D. H. Ford, “Narrowband Extraction in XeF Lasers,” in Confernce on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), unpublished paper.
  9. S. E. Moody, L. A. Levin, R. E. Center, J. J. Ewing, E. L. Klosterman, “Measurement of Lasing Performance and Efficiency of E-Beam Pumped Xenon Chloride,” IEEE J. Quantum Electron. QE-17, 1856–1861 (1981). [CrossRef]
  10. L. F. Champagne, J. G. Eden, N. W. Harris, N. Djeu, S. K. Searles, “1-μs Laser Pulses From XeF,” Appl. Phys. Lett. 30, 160–161 (1977). [CrossRef]
  11. S. E. Moody, W. D. Kimura, “The Role of Atomic Absorption in Xenon Fluoride Lasers,” in Proceedings of the International Conference on Lasers '85, C. P. Wang, Ed. (STS Press, McLean, 1986), p. 423–428.
  12. C. A. Brau, in Excimer Lasers, C. K. Rhodes, Ed. (Springer-Verlag, Berlin, 1979), p. 88.
  13. A. L. Pindroh, Spectra Technology, Inc., private communication.
  14. R. L. Wilkins, “Theoretical Calculations of XeF Ground State Kinetics,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-39, (unpublished).
  15. S. Fulghum, M. Feld, A. Javan, “A Multilevel Model of XeF Ground State Kinetics,” IEEE J. Quantum Electron. QE-16, 815–819 (1980). [CrossRef]
  16. T. T. Yang, J. A. Blauer, C. E. Turner, G. A. Merry, “XeF Ground State Kinetics Analysis,” Appl. Opt. 26, 2533–2538 (1987). [CrossRef] [PubMed]
  17. J. F. Bott, R. F. Heidner, J. S. Holloway, J. B. Koffend, M. A. Kwok, “Measurements of XeF Ground State Dissociation and Vibrational Equilibration,” The Aerospace Corporation, El Segundo, CA, Report SD-TR-88-54, (unpublished).
  18. A. Mandl, L. Litzenberger, “XeF Laser at a High Electron Beam Pump Rate,” Appl. Phys. Lett. 51, 955–957 (1987). [CrossRef]
  19. L. F. Champagne, “Temperature-Dependent Absorption Processes in the XeF Laser,” Appl. Phys. Lett. 35, 516–519 (1979). [CrossRef]
  20. D. H. Burde et al., “Mechanism for Improved XeF Laser Performance at Elevated Temperatures,” Appl. Opt. 26, 2539–2543 (1987). [CrossRef] [PubMed]
  21. T. T. Yang et al., “Spectra of Electron-Beam Pumped XeF Lasers,” Appl. Opt. 27, 49–57 (1988). [CrossRef] [PubMed]
  22. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Valazco, D. W. Setser, “Spectroscopic Studies of Diatomic Noble Gas. Halides. IV. Vibrational and Rotational Constants for the X, B, and D States of XeF,” J. Chem. Phys. 68, 5187–5198 (1978). [CrossRef]
  23. P. C. Tellinghuisen, J. Tellinghuisen, “B→X Transition in 136Xe19F,” Appl. Phys. Lett. 43, 898–900 (1983). [CrossRef]
  24. W. D. Kimura, E. T. Salesky, J. F. Seamans, “Improved Performance of XeF Lasers in Argon Diluent,” Appl. Phys. Lett. 49, 1319–1321 (1986). [CrossRef]
  25. L. M. Frantz, J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34, 2346–2349 (1963). [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), pp. 123–170.
  27. M. Rokni, J. A. Mangano, J. H. Jacob, J. C. Hsia, “Rare Gas Fluoride Lasers,” IEEE J. Quantum Electron. QE-14, 464–481 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited