OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 21 — Nov. 1, 1989
  • pp: 4585–4594

Force to frequency conversion by intracavity photoelastic modulation

Wolfgang Holzapfel and Walter Settgast  »View Author Affiliations


Applied Optics, Vol. 28, Issue 21, pp. 4585-4594 (1989)
http://dx.doi.org/10.1364/AO.28.004585


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Force to frequency conversion (FFC) using the photoelastic effect inside a laser cavity is described. Analytic expressions are derived for scale factor, measurement errors, and laser dependent nonlinearity of appropriate instrument transducers. The influence of the laser pushing and pulling effects on linearity is calculated on the basis of the third-order saturation model. Our experiments with a modular test setup (633 nm) demonstrate FFC to be proportional to a high degree over almost 6 decades of input signal range. From 2 × 10−4 up to 80 N we observed the noise equivalent resolution of 10−4 N. The frequency response of our test setup was established from dc up to some kilohertz. FFC measurement range and resolution can be extended to 10−6 N or smaller values by applying improved laser stabilization and miniaturizing the cavity length and size of photoelastic material.

© 1989 Optical Society of America

History
Original Manuscript: August 22, 1988
Published: November 1, 1989

Citation
Wolfgang Holzapfel and Walter Settgast, "Force to frequency conversion by intracavity photoelastic modulation," Appl. Opt. 28, 4585-4594 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-21-4585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Draper, E. J. Frey, M. S. Sapuppo, P. K. Chapman, “Measurement of Small Specific Forces in Space,” Astronaut. Acta 11, 1–12 (1965).
  2. A. Abramovici, Z. Vager, M. Weksler, “Experimental Test of a Prototype Gravitational Radiation Detector Employing an Active Cavity Laser Sensor,” J. Phys. E 19, 182–188 (1986). [CrossRef]
  3. W. B. Spillman, D. H. McMahon, “Multimode Fiber-Optic Hydrophone Based on the Photoelastic Effect,” Appl. Opt. 21, 3511–3514 (1982). [CrossRef] [PubMed]
  4. A. J. Barlow, D. N. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834–839 (1983). [CrossRef]
  5. G. Martens, “Measurement of Pressure by Photoelastic Effects,” Sensors Actuators Vol. 6, 181–190 (1984). [CrossRef]
  6. G. Martens, “Photoelastic Fiber-Optical Sensor for Measurement of Force and Pressure,” Tech. Messen 53, No. 9, 331–338 (1986).
  7. J. C. Canit, J. Badoz, “Photoelastic Modulator for Polarimetry and Ellipsometry,” Appl. Opt. 23, 2861–2862 (1984). [CrossRef] [PubMed]
  8. J. A. Abate, St. D. Jacobs, “Spatially Resolved Characterization of Thin Films,” LLE Rev. 10, 3–6 (1982).
  9. A. J. Barlow, “Optical-Fiber Birefringence Measurement Using a Photo-Elastic Modulator,” IEEE/OSA J. Lightwave Technol. LT-3, 135–145 (1985). [CrossRef]
  10. W. B. Spillmann, “Multimode Fiber-Optic Accelerometer Based on the Photoelastic Effect,” Appl. Opt. 21, 2653–2655 (1982). [CrossRef]
  11. S. Tai, K. Kyuma, M. Nunoshita, “Fiber-Optic Acceleration Sensor Based on the Photoelastic Effect,” Appl. Opt. 22, 1771–1774 (1983). [CrossRef] [PubMed]
  12. E. D. T. Jacobs, W. L. Zingery, “Accelerometer,” U.S. Patent3,517,560 (1970).
  13. W. Holzapfel, “Laser in Measurement and Navigation,” Laser Elektro-Opt. 5, 3–7 (1973).
  14. T. J. Hutchings, W. L. Zingery, “Laser Accelerometer, U.S. Patent3,800,594 (1974).
  15. G. D. Babcock, “Laser Accelerometer,” U.S. Patent4,048,859 (Oct.1975).
  16. W. Holzapfel, “Inertial Acceleration Measurement by Laser Methods and Systems,” BMFT-FB W 75-30 (12) (1975).
  17. W. Holzapfel, “Acceleration and Force Measurement System,” Patent DE2633178C3 (1981).
  18. W. Holzapfel, U. Riss, “Computer-Based High Resolution Transmission Ellipsometry,” Appl. Opt. 26, 145–153 (1987). [CrossRef] [PubMed]
  19. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  20. D. Polder, W. van Haeringen, “The Effect of Saturation on the Ellipticity of Modes in Gas Lasers,” Phys. Lett. 19, 380–381 (1965). [CrossRef]
  21. W. van Haeringen, “Polarization Properties of a Single Mode Operating Gas Laser in a Small Axial Magnetic Field,” Phys. Rev. 158, 256–272 (1967). [CrossRef]
  22. R. A. Keijser, “Polarization Properties of Internal Mirror He–Ne Lasers in a Strong Transverse Magnetic Field,” Opt. Commun. 23, 194–198 (1977). [CrossRef]
  23. D. Lenstra, G. C. Herman, “Saturation Induced Polarization Preferences in Two-Mode Oscillation Gas Lasers,” Phys. C 95, 405–411 (1978).
  24. W. M. Doyle, M. B. White, “Properties of an Anisotropic Fabry-Perot Resonator,” J. Opt. Soc. Am. 55, 1221–1225 (1965). [CrossRef]
  25. H. de Lang, “Polarization Properties of Optical Resonators Passive and Active,” Philips Res. Rep. Supplement No. 8, (1967), pp. 4–20.
  26. W. E. Lamb, “Theory of an Optical Maser,” Phys. Rev. A 134, A1429–A1450 (1964).
  27. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974), pp. 96–170.
  28. A. Maitland, M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), pp. 214–328.
  29. R. A. McFarlane, “Frequency Pushing and Frequency Pulling in a He-Ne Gas Optical Maser,” Phys. Rev. A 135, A543–A550 (1964).
  30. R. L. Fork, M. A. Pollack, “Mode Competition and Collisions Effects in Gaseous Optical Masers,” Phys. Rev. A 139, A1408–A1414 (1965).
  31. P. W. Smith, “Linewidth and Saturation Parameters for the 6328-Å Transition in a He–Ne Laser,” J. Appl. Phys. 37, 2089–2093 (1966). [CrossRef]
  32. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency Stabilization of Internal-Mirror Helium–Neon Lasers,” Appl. Opt. 11, 742–744 (1972). [CrossRef] [PubMed]
  33. H. Wolf, Spannungsoptik, Bd. 1 (Berlin, New York, 1976), pp. 77–102.
  34. B. D. Fried, S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).
  35. M. Abramowitz, T. A. Stegun, Handbook of Mathematical Functions (U.S. National Bureau of Standards, Washington, DC, 1964), pp. 297–330.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited