OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 24 — Dec. 15, 1989
  • pp: 5243–5249

Similarity relations for the interaction parameters in radiation transport

Douglas R. Wyman, Michael S. Patterson, and Brian C. Wilson  »View Author Affiliations


Applied Optics, Vol. 28, Issue 24, pp. 5243-5249 (1989)
http://dx.doi.org/10.1364/AO.28.005243


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is possible to alter the interaction parameters characterizing neutral particle radiation transport without significantly altering the spatial distribution of the particle fluence rate. Practical mathematical relations specifying the constraints that such an alteration must satisfy are known as similarity relations. Similarity relations are derived in this work from integrated versions of the single energy neutral particle transport equation. The application of these relations in accelerating Monte Carlo deep penetration simulations is described and assessed. Computational reductions may exceed a factor of 10 in highly scattering media in which the scattering is highly forward peaked, such as applies to the propagation of red and near IR light through soft tissues.

© 1989 Optical Society of America

History
Original Manuscript: September 26, 1988
Published: December 15, 1989

Citation
Douglas R. Wyman, Michael S. Patterson, and Brian C. Wilson, "Similarity relations for the interaction parameters in radiation transport," Appl. Opt. 28, 5243-5249 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-24-5243

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited