OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 6 — Mar. 15, 1989
  • pp: 1049–1052

Time-harmonic and time-dependent dyadic Green’s functions for some uniaxial gyro-electromagnetic media

Akhlesh Lakhtakia, Vasundara V. Varadan, and Vijay K. Varadan  »View Author Affiliations

Applied Optics, Vol. 28, Issue 6, pp. 1049-1052 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-harmonic and time-dependent Green’s functions are derived for a lossless, uniaxial gyroelectromagnetic medium whose permeability tensor is a scalar multiple of its permittivity tensor, and their properties are investigated. The derived Green’s functions can be used for the solution of initial and boundary value problems, as well as for obtaining the electromagnetic fields radiated by electric and magnetic sources.

© 1989 Optical Society of America

Original Manuscript: June 17, 1988
Published: March 15, 1989

Akhlesh Lakhtakia, Vasundara V. Varadan, and Vijay K. Varadan, "Time-harmonic and time-dependent dyadic Green’s functions for some uniaxial gyro-electromagnetic media," Appl. Opt. 28, 1049-1052 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Post, Formal Structure of Electromagnetics (North-Holland, Amsterdam, 1962).
  2. D. K. Cheng, J. A. Kong, “Covariant Descriptions of Bianisotropic Media,” Proc. IEEE 56, 248 (1968). [CrossRef]
  3. J. A. Kong, “Theorems of Bianisotropic Media,” Proc. IEEE 60, 1036 (1972). [CrossRef]
  4. C. M. Krowne, “Electromagnetic Theorems for Complex Anisotropic Media,” IEEE Trans. Antennas Propag. AP-32, 1224 (1984). [CrossRef]
  5. C. Altman, A. Schatzberg, K. Suchy, “Symmetry Transformations and Reversal of Currents and Fields in Bounded (Bi)anisotropic Media,” IEEE Trans. Antennas Propag. AP-32, 1204 (1984). [CrossRef]
  6. K. K. Mei, “On the Perturbational Solution to the Dyadic Green’s Function of Maxwell’s Equations in Anisotropic Media,” IEEE Trans. Antennas Propag. AP-19, 665 (1971). [CrossRef]
  7. S. Przezdziecki, R. A. Hurd, “A Note on Scalar Hertz Potentials for Gyrotropic Media,” Appl. Phys. 20, 313 (1979). [CrossRef]
  8. W. Weiglhofer, ”Scalarization of Maxwell’s Equations in General Inhomogeneous Bianisotropic Media,” Proc. Inst. Electr. Eng. Part H 134, 357 (1987).
  9. H. C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, New York, 1983).
  10. H. C. Chen, “Dyadic Green’s Function and Radiation in a Uniaxially Anisotropic Medium,” Int. J. Electron. 35, 633 (1975). [CrossRef]
  11. A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Radiation and Canonical Sources in Uniaxial Dielectric Media,” Int. J. Electron. 65, 1171 (1988). [CrossRef]
  12. A. Lakhtakia, V. V. Varadan, V. K. Varadan, “Time-Dependent Dyadic Green’s Functions for Uniaxial Dielectric Media,” J. Wave-Mater. Interact. 3, 1 (1988).
  13. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1972), Chap. 3.
  14. Y. Chow, “A Note on Radiation in a Gyro-Electric-Magnetic Medium—An Extension of Bunkin’s Calculations,” IRE Trans. Antennas Propag. AP-10, 464 (1962). [CrossRef]
  15. V. H. Rumsey, “Propagation in Generalized Gyrotropic Media,” IEEE Trans. Antennas Propag. AP-12, 83 (1964). [CrossRef]
  16. L. B. Felsen, “Propagation and Diffraction of Transient Fields in Non-Dispersive and Dispersive Media,” in Transient Electromagnetic Fields, L. B. Felsen, Ed. (Springer-Verlag, Berlin, 1976). [CrossRef]
  17. D. S. Jones, Methods in Electromagnetic Wave Propagation (Clarendon, Oxford, 1979).
  18. Y. H. Ku, Transient Circuit Analysis (Van Nostrand, Princeton, NJ, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited