OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 6 — Mar. 15, 1989
  • pp: 1084–1096

Fundus reflectometry for photocoagulation dosimetry

Kent P. Pflibsen, François C. Delori, Oleg Pomerantzeff, and Michail M. Pankratov  »View Author Affiliations

Applied Optics, Vol. 28, Issue 6, pp. 1084-1096 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dosimetry technique has been developed which utilizes three-wavelength fundus reflectometry, a quantitative model of fundus reflectance, and a model of thermal tissue damage to control photocoagulation lesion size. The fundus reflectance model uses Lambert-Beer’s law exponential attenuators to describe the ocular media, retinal pigment epithelium (RPE), and choriocapillaris transmission characteristics while the choroid is described as a Kubelka-Munklike homogeneous scatterer/absorber. Three reflecting layers are included in the model at the retinal inner limiting membrane, Bruch’s membrane, and the sclera. Measured lesion size variability contained components which resulted from variations in choroidal blood and melanin and RPE melanin concentration. Photocoagulation dosimetry was found to reduce the photocoagulation lesion size coefficient of variation for red light from 45% to 10% for the control and dosimetry cases, respectively. Similar improvement was noted for yellow photocoagulation light.

© 1989 Optical Society of America

Original Manuscript: June 16, 1988
Published: March 15, 1989

Kent P. Pflibsen, François C. Delori, Oleg Pomerantzeff, and Michail M. Pankratov, "Fundus reflectometry for photocoagulation dosimetry," Appl. Opt. 28, 1084-1096 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kampik, W. R. Green, R. G. Michels, T. A. Rice, “Epiretinale Membranen nach Photokoagulation (postkoagulative Maculopathie),” Ber. Dtsch. Ophthal. Ges. 78, 593 (1981).
  2. F. Fankhauser, W. Lotmar, A. Roulier, “Dosimetry in Photocoagulation,” Arch. Ophthalmol. 85, 610 (1971). [CrossRef] [PubMed]
  3. R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus Reflectometry: a Step Towards Optimization of the Retina Photocoagulation,” Mod. Probl. Ophthalmol. 18, 383 (1977). [PubMed]
  4. R. Birngruber, V.-P. Gabel, F. Hillenkamp, “Fundus reflektometrie waehrend Laser koagulationen,” Ber. Dtsch. Ophthalmol. Ges. 74, 422 (1977).
  5. V.-P. Gabel, R. Birngruber, W. Weinberg, R. McCord, F. Hillenkamp, “Comparison of Temperature Measurements and Fundus Reflectometry in Laser Coagulation,” Mod. Probl. Ophthalmol. 20, 169 (1979). [PubMed]
  6. W. Weinberg, B. Lorentz, R. Birngruber, V.-P. Gabel, “Laser Treatment and Photocoagulation of the Eye,” Doc. Ophthalmol. Proc. Ser. 36, 64 (1984).
  7. W. Lang, E. Weimer, “Apparatus for Dose Measurement upon Photocoagulation in the Fundus of the Eye,” U.S. Pat.4,644,948 (1987).
  8. O. Pomerantzeff, G. T. Timberlake, “Toward Automation in Photocoagulation,” Doc. Ophthalmol. Proc. Ser. 36, 313 (1984).
  9. O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “Time and Location Analysis of Lesion Formation in Photocoagulation,” Arch. Ophthalmol. 101, 954 (1983). [CrossRef] [PubMed]
  10. O. Pomerantzeff, G. J. Wang, M. Pankratov, J. Schneider, “A Method to Predetermine the Correct Photocoagulation Dosage,” Arch. Ophthalmol. 101, 949 (1983). [CrossRef] [PubMed]
  11. O. Pomerantzeff, G. Timberlake, G. J. Wang, M. M. Pankratov, J. Schneider-Goren, “Automation in Krypton Laser Photocoagulation,” Invest. Ophthalmol. Visual Sci. 25, 711 (1984).
  12. O. Pomerantzeff, M. M. Pankratov, G. J. Wang, C. L. Schepens, “An Optimized Zoom Ophthalmoscope,” Ophthalmology 91, 197 (1984). [PubMed]
  13. This maximum permissible exposure refers to the human standard ANSI Z136.1–1976.
  14. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monchromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 95, 861 (1977). [CrossRef] [PubMed]
  15. T. Behrendt, L. A. Wilson, “Spectral Reflectance Photography of the Retina,” Am. J. Ophthalmol. 59, 1079 (1965). [PubMed]
  16. F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Fundus Reflectometry and Its Clinical Applications Workshop, Utrecht, The Netherlands (1986).
  17. F. C. Delori, K. P. Pflibsen, K. A. Fitch, “Fundus Reflectometry Measurements of Choroidal Blood Volume,” Invest. Ophthalmol. Visual Sci. 28 (ARVO Suppl), 120 (1987).
  18. F. C. Delori, K. P. Pflibsen, “Spectral Reflectance of the Human Ocular Fundus,” Appl. Opt. 28, 1061 (1989). [CrossRef] [PubMed]
  19. D. Van Norren, L. F. Tiemeijer, “Spectral Reflectance of the Human Eye,” Vis. Res. 26, 313 (1986). [CrossRef] [PubMed]
  20. The breed used in this study was a cross breed between white albino and brown rabbits. This produced a lightly pigmented fundus with large enough pigment variations to model human fundus pigmentation variations readily.
  21. N. H. Bakker, “Fundus Reflectometry, an Experimental Study,” Doc. Ophthalmol. 38, 271 (1974). [PubMed]
  22. W. J. Geeraets, R. C. Williams, G. Chan, W. T. Ham, D. Guerry, F. H. Schmidt, “The Loss of Light Energy in Retina and Choroid,” Arch. Ophthalmol. 64, 158 (1960). [CrossRef]
  23. H. Wiesinger, F. H. Schmidt, R. C. Williams, C. O. Tiller, R. S. Ruffin, D. Guerry, “The Transmission of Light Through the Ocular Media of the Rabbit Eye,” Am. J. Ophthalmol. 42, 907 (1956). [PubMed]
  24. R. S. Smith, M. N. Stein, “Ocular Hazards of Transscleral Laser Radiation,” Am. J. Ophthalmol. 66, 21 (1968). [PubMed]
  25. R. R. Anderson, J. A. Parish, “The Optics of Human Skin,” J. Invest. Dermatol. 77, 13 (1981). [CrossRef] [PubMed]
  26. J. J. Vos, “A Theory of Retinal Burns,” Bull. Math. Biophys. 24, 115 (1962). [CrossRef] [PubMed]
  27. J. J. Vos, “Digital Computations of Temperature in Retinal Burn Problems,” National Defence Research Council TNO Report IZF 1965-16 (1965).
  28. A. M. Clarke, W. J. Geeraets, W. T. Ham, “An Equilibrium Thermal Model for Retinal Injury from Optical Sources,” Appl. Opt. 8, 1051 (1969). [CrossRef] [PubMed]
  29. M. A. Mainster, T. J. White, J. H. Tips, P. W. Wilson, “Retinal-Temperature Increases Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 264 (1970). [CrossRef] [PubMed]
  30. M. A. Mainster, T. J. White, R. G. Allen, “Spectral Dependence of Retinal Damage Produced by Intense Light Sources,” J. Opt. Soc. Am. 60, 848 (1970). [CrossRef] [PubMed]
  31. T. J. White, M. A. Mainster, J. H. Tips, P. W. Wilson, “Chorioretinal Thermal Behavior,” Bull. Math. Biophys. 32, 315 (1970). [CrossRef] [PubMed]
  32. C. P. Cain, A. J. Welch, “Measured and Predicted Laser-Induced Temperature Rises in the Rabbit Fundus,” Invest. Ophthalmol. 13, 60 (1974). [PubMed]
  33. A. N. Takata, L. Goldfinch, J. K. Hinds, L. P. Kuan, N. Thomopoulis, A. Weigandt, “Thermal Model of Laser-Induced Eye Damage,” Final Technical Report IITRI J-TR 74–6344 (Oct.1974).
  34. P. Davis, “The Heating of the Skin,” in Temperature: Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold, New York, 1963), pp. 149–169.
  35. J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9, 97 (1970). [PubMed]
  36. A. J. Welch, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron. QE-20, 1471 (1984). [CrossRef]
  37. K. P. Pflibsen, O. Pomerantzeff, “Use of Fundus Reflectometry to Predetermine Photocoagulation,” presented at Nineteenth Annual Meeting, Retina Society (1986).
  38. K. P. Pflibsen, “Modeling Reflectance Changes During Photocoagulation,” in Technical Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, DC, 1988), paper THY5.
  39. K. P. Pflibsen, O. Pomerantzeff, M. M. Pankratov, “Use of Fundus Reflectometry in Determining Photocoagulation Parameters,” Invest. Ophthalmol. Visual Sci. 27 (ARVO Suppl), 313 (1986).
  40. J. Marshall, G. Clover, S. Rothery, “Some New Findings on Retinal Irradiation by Krypton and Argon Lasers,” Doc. Ophthalmol. Proc. Ser. 36, 21 (1984).
  41. W. Weinberg, “Die Aenderung des Reflexionsvermoegehs der Netzhaut als Mass fuer die raumliche ausdehnung der thermisch induzierten Gewebsschaedigung bei der therapeutischen Photokoagulation,” Ph.D. Dissertation, Fachbereich Physik der U. Frankfurt, F.R. Germany, Institut fuer Biophysik Theodor-Stern-Kai 7 D-6000 Frankfurt 70 (1984).
  42. K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, “Laser Photocoagulation Dosimetry Using Two-Wavelength Fundus Reflectometry,” in Technical Digest of Topical Meeting on Noninvasive Assessment of the Visual System (Optical Society of America, Washington, DC, 1988), pp. 117–120.
  43. K. E. Spells, “The Thermal Conductivity of Some Biological Fluids,” Phys. Med. Biol. 5, 139 (1960). [CrossRef]
  44. J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch, “Retinal Pigment Epithelial Lipofuscin and Melanin and Choroidal Melanin in Human Eye,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986). [PubMed]
  45. G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969), pp. 116–126.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited