OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 6 — Mar. 15, 1989
  • pp: 1214–1220

Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy

Arthur G. Palmer, III and Nancy L. Thompson  »View Author Affiliations

Applied Optics, Vol. 28, Issue 6, pp. 1214-1220 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Interpretation of spatially resolved optical spectroscopies requires knowledge of the optical excitation and collection profiles of the experimental apparatus. This paper describes measurement of the relative norms of the spatial profile of a microscope- and laser-based optical system. The profile is given by the product of the spatial intensity of a focused laser beam and the point collection efficiency of the microscope. Experimental determination of the values of the norms is essential to the use of high order autocorrelation in fluorescence correlation spectroscopy to measure the concentrations and relative fluorescence yields of different fluorescent components (e.g., monomers and oligomers) in a multicomponent solution and also permits evaluation of theoretical models of the optical spatial intensity profile. In addition, the results may have applicability to high order autocorrelation in other optical spectroscopies, to confocal microscopy and to nonlinear optics in general.

© 1989 Optical Society of America

Original Manuscript: October 10, 1988
Published: March 15, 1989

Arthur G. Palmer and Nancy L. Thompson, "Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy," Appl. Opt. 28, 1214-1220 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Suck, D. Quitman, B. Maier, Eds., Workshop on Investigation of Higher Order Correlation Functions, J. Phys.46(C9) (1985).
  2. B. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978), pp. 25–40.
  3. A. W. Lohman, B. Wirnitzer, “Triple Correlations,” Proc. IEEE 72, 889 (1984).
  4. L. Basano, P. Ottonello, “Third Order Correlator for Point Processes,” Rev. Sci. Instrum. 58, 579 (1987). [CrossRef]
  5. A. G. Palmer, N. L. Thompson, “Molecular Aggregation Characterized by High Order Autocorrelation in Fluorescence Correlation Spectroscopy,” Biophys. J. 52, 257 (1987). [CrossRef] [PubMed]
  6. A. G. Palmer, N. L. Thompson, “Intensity Dependence of High Order Autocorrelation Functions in Fluorescence Correlation Spectroscopy,” Rev. Sci. Instr. (1989), in press. [CrossRef]
  7. A. G. Palmer, N. L. Thompson, “High Order Fluorescence Fluctuation Analysis of Model Protein Clusters,” submitted.
  8. P. N. Pusey, “Statistical Properties of Scattered Radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, Eds. (Plenum, New York, 1977), p. 45.
  9. C. J. Oliver, “Recent Techniques in Photon Correlation and Spectrum Analysis Techniques,” in Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems, S. Chen, B. Chu, R. Nossal, Eds. (Plenum, 1981), pp. 87–120. [CrossRef]
  10. P. N. Pusey, J. G. Rarity, “Measurement of Higher-Order Correlation Functions by Intensity Cross Correlation Light Scattering,” in Workshop on Investigation of Higher Order Correlation Functions, J. B. Suck, D. Quitman, B. Maier, Eds., J. Phys.46(C9), 43 (1985).
  11. B. Blumich, “Two Dimensional Interferometry,” Rev. Sci. Instrum. 58, 911 (1987). [CrossRef]
  12. L. S. Leibovitch, J. Fischbarg, “Determining the Kinetics of Membrane Pores from Patch Clamp Data Without Measuring the Open and Closed Times,” Biochim. Biophys. Acta 813, 132 (1985). [CrossRef]
  13. L. S. Leibovitch, J. Fischbarg, J. P. Koniarek, “Optical Correlation Functions Applied to the Random Telegraph Signal: How to Analyze Patch Clamp Data Without Measuring the Open and Closed Times,” Math. Biosci. 76, 1 (1985).
  14. L. S. Leibovitch, J. Fischbarg, “Membrane Pores: A Computer Simulation of Interacting Pores Analyzed by g1(τ) and g2(τ) Correlation Functions,” J. Theor. Biol. 119, 287 (1986). [CrossRef]
  15. B. J. Ackerson, T. W. Taylor, N. A. Clark, “Characterization of the Local Structure of Fluids by Apertured Cross-Correlation Functions,” Phys. Rev. A 31, 3183 (1985). [CrossRef] [PubMed]
  16. A. G. Palmer, N. L. Thompson, “Fluorescence Correlation Spectroscopy for Detecting Submicroscopic Clusters of Fluorescent Molecules in Membranes,” Chem. Phys. Lipids, in press. [PubMed]
  17. I. Steinberg, “On the Time Reversal of Noise Signals,” Biophys.J. 50, 171 (1986). [CrossRef] [PubMed]
  18. H. L. Royden, Real Analysis (Macmillan, New York, 1963), p.93.
  19. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, Orlando, 1984), pp. 70–76
  20. S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Orlando, 1984), pp. 89–99.
  21. D. Magde, W. W. Webb, E. L. Elson, “Fluorescence Correlation Spectroscopy. II. An Experimental Realization,” Biopolymers 13, 29 (1974). [CrossRef] [PubMed]
  22. N. L. Thompson, “Fluorescence Correlation Spectroscopy,” in Fluorescence Spectroscopy 2, J. Lakowicz, Ed. (Plenum, New York), in press.
  23. The point collection efficiency function T(r) is obtained by integrating the impulse response function of the optical system over the transverse image space coordinates at the location of the aperture along the optical axis.24
  24. D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, W. W. Webb, “Dynamics of Fluorescence Marker Concentration as a Probe of Mobility,” Biophys. J. 16, 1315 (1976). [CrossRef] [PubMed]
  25. A. Yoshida, T. Asakura, “Electromagnetic Field Near the Focus of Gaussian Beams,” Optik 41, 281 (1974).
  26. P. Wahl, “Optimization of Laser Beams in FRAP Experiments of Microscopical Objects,” Biophys. Chem. 22, 317 (1985). [CrossRef] [PubMed]
  27. D. A. Agard, “Optical Sectioning Microscopy: Cellular Architecture in Three Dimensions,” Ann. Rev. Biophys. Bioeng. 13, 191 (1984). [CrossRef]
  28. M. B. Schneider, W. W. Webb, “Measurement of Submicron Laser Beam Radii,” Appl. Opt. 20, 1382 (1981). [CrossRef] [PubMed]
  29. A. H. Stolpen, C. S. Brown, D. E. Golan, “Characterization of Microscopic Laser Beams by Two-Dimensional Scanning of Fluorescence Emission,” Biophys. J. 53, 477a (1988).
  30. R. D. Icenogle, E. L. Elson, “Fluorescence Correlation Spectroscopy and Photobleaching Recovery of Multiple Binding Reactions. I. Theory and FCS Measurements,” Biopolymers 22, 1919 (1983). [CrossRef] [PubMed]
  31. S. M. Sorscher, M. P. Klein, “Profile of a Focussed Collimated Laser Beam Near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980). [CrossRef]
  32. N. L. Thompson, A. A. Brian, H. M. McConnell, “Covalent Linkage of a Synthetic Peptide to a Fluorescent Phospholipid and Its Incorporation into Supported Phospholipid Monolayers,” Biochim. Biophys. Acta 722, 10 (1984).
  33. N. L. Thompson, H. M. McConnell, T. P. Burghardt, “Order in Supported Phospholipid Monolayers Detected by the Dichroism of Fluorescence Excited with Polarized Evanescent Illumination,” Biophys. J. 46, 729 (1984). [CrossRef] [PubMed]
  34. H. M. McConnell, T. H. Watts, R. M. Weis, A. A. Brian, “Supported Planar Membranes in Studies of Cell-Cell Recognition in the Immune System,” Biochim. Biophys. Acta 864, 95 (1986). [CrossRef] [PubMed]
  35. N. L. Thompson, A. G. Palmer, “Model Membranes on Planar Substrates,” Commun. Mol. Cell. Biophys. 5, 39 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited