OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 7 — Apr. 1, 1989
  • pp: 1401–1408

Photoacoustic technique for the measurement of absorption line profiles

Robert P. Fiegel, Paul B. Hays, and Wayne M. Wright  »View Author Affiliations

Applied Optics, Vol. 28, Issue 7, pp. 1401-1408 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectrophone utilizing a resonant cylindrical cavity and operated by driving the first azimuthal mode of the cavity has been developed for the study of weak absorption lines of gases at pressures from 100 to 1300 Torr. Presented are the acoustic resonant amplification factor as a function of pressure, and a description of the noise sources inherent in this spectrophone. An example is given of the optical frequency resolution resulting when this spectrophone is used in conjunction with a tunable ring dye laser as a high resolution spectrometer.

© 1989 Optical Society of America

Original Manuscript: February 19, 1988
Published: April 1, 1989

Robert P. Fiegel, Paul B. Hays, and Wayne M. Wright, "Photoacoustic technique for the measurement of absorption line profiles," Appl. Opt. 28, 1401-1408 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Bell, “On the Production of Sound by Light,” Am. J. Sci. 20, 305 (1880).
  2. A. G. Bell, “Upon the Production of Sound by Radiant Energy,” Philos. Mag. 11, 510 (1881). [CrossRef]
  3. J. Tyndall, “Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter,” Proc. R. Soc. London 31, 307 (1881). [CrossRef]
  4. W. C. Roentgen, “On Tones Produced by the Intermittent Irradiation of a Gas,” Philos. Mag. 11, 308 (1881). [CrossRef]
  5. W. D. Herzberger, E. T. Bush, G. W. Leck, “Thermal and Acoustic Effects Attending Absorption of Microwaves by Gases,” RCA Rev. 7, 422 (1946).
  6. E. L. Kerr, J. G. Atwood, “The Laser Illuminated Absorptivity Spectrophone: A Method for Measurement of Weak Absorptivity in Gases at Laser Wavelengths,” Appl. Opt. 7, 915 (1968). [CrossRef] [PubMed]
  7. L. G. Rosengren, “Optimal Optoacoustic Detector Design,” Appl. Opt. 14, 1960 (1975). [CrossRef] [PubMed]
  8. G. A. West, J. J. Barrett, D. R. Siebert, K. V. Reddy, “Photo acoustic Spectroscopy,” Rev. Sci. In strum. 54, 797 (1983). [CrossRef]
  9. A. C. Tam, “Applications of Sensing Techniques,” Rev. Mod. Phys. 58, 381 (1986). [CrossRef]
  10. V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin, 1986).
  11. Y. Pao, Ed. Optoacoustic Spectroscopy and Detection (Academic, New York, 1977).
  12. V. V. Zuev, Y. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by the Differential-Absorption Method,” Opt. Lett. 10, 318 (1985). [CrossRef] [PubMed]
  13. J. Bosenberg, “Measurements of the Pressure Shift of Water Vapor Absorption Lines by Simultaneous Photoacoustic Spectroscopy,” Appl. Opt. 24, 3531 (1985). [CrossRef] [PubMed]
  14. Y. N. Ponomarev, B. A. Tikhomirov, ”Measurement of H2O Absorption-Line-Center Shift due to Pressure in a Two-Channel Optoacoustic Spectrometer,” Opt. Spectrosc. 58, 580 (1985).
  15. V. D. Galkin, “Line Shifts in the A Oxygen Band as a Function of the Pressure,” Opt. Spectrosc. 35, 367 (1973).
  16. V. D. Galkin, “Pressure-Induced Line Shift in the (0,0) b1Σg+−X3Σg− Band of Oxygen,” Opt. Spectrosc. 46, 106 (1979).
  17. T. G. Adiks, V. I. Dianov-Klokov, “Shock Shift of Lines in the 0.762-μm Band of Oxygen and Its Effect on the Transmission Function in an Inhomogeneous Atmosphere,” Opt. Spectosc. 30, 110 (1971).
  18. W. M. Wright, D. H. Stedman, L. Stefanutti, R. W. Terhune, “Measurement of Light Absorption by Aerosols with an Optoacoustic Detector,” in Light Absorption by Aerosol Particles, H.E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  19. W. M. Wright, “Generation of Sound Within a Closed Cell by an Alternating Current in a Straight Wire,” J. Acoust. Soc. Am. 82, 654 (1987). [CrossRef]
  20. C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic Amplifier for Detection of Atmospheric Pollutants,” Appl. Phys. Lett. 23, 633 (1973). [CrossRef]
  21. C. F. Dewey, “Design of Optoacoustic Systems,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 3.
  22. L. B. Kreuzer, “The Physics of Signal Generation and Detection,” in Optoacoustic Spectroscopy and Detection, Y. Pao, Ed. (Academic, New York, 1977), Chap. 1.
  23. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983). [CrossRef] [PubMed]
  24. K. J. Ritter, T. D. Wilkerson, “High-Resolution Spectroscopy of the Oxygen A Band,” J. Mol. Spectrosc. 121, 1 (1987). [CrossRef]
  25. R. D. Kamm, “Detection of Weakly Absorbing Gases Using a Resonant Optoacoustic Method,” J. Appl. Phys. 47, 3550 (1976). [CrossRef]
  26. “AFGL Atmospheric Absorption Line Parameters Compilation,” National Climatic Center of NOAA, Digital Product Section, Federal Building, Asheville, NC 28801.
  27. M. W. Sigrist, “Laser Generation of Acoustic Waves in Liquids and Gases,” J. Appl. Phys. 60, R83 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited