OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 7 — Apr. 1, 1989
  • pp: 1409–1416

Design and simulated performance of a CARS spectrometer for dynamic temperature measurements using electronic heterodyning

M. Jamal Deen and E. D. Thompson  »View Author Affiliations


Applied Optics, Vol. 28, Issue 7, pp. 1409-1416 (1989)
http://dx.doi.org/10.1364/AO.28.001409


View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new design for generating CARS signals and for the detection and processing of these signals is presented and evaluated. The design is based on electronic heterodyning of the CARS spectrum of nitrogen at two selected narrowband frequencies, ratioing the resulting signal strengths, and comparing this ratio with a theoretically derived temperature scale. A reference cell is incorporated into the design for system calibration and for accurate temperature measurements. The spectrometer is found capable of measuring temperature in the submillisecond time scale with an accuracy of 10% in the 1000–2000 K temperature range. A typical result using the Hg x Cd1− x Te photomixer for T = 1500 K, ΔT = 50 K is a SNR of 21 dB and a data collection rate of 300 Hz.

© 1989 Optical Society of America

History
Original Manuscript: January 3, 1988
Published: April 1, 1989

Citation
M. Jamal Deen and E. D. Thompson, "Design and simulated performance of a CARS spectrometer for dynamic temperature measurements using electronic heterodyning," Appl. Opt. 28, 1409-1416 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-7-1409


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Bechtel, A. Chraplyvy, “Laser Diagnostics of Flames, Combustion Products and Sprays,” Proc. IEEE 70, 658 (1983). [CrossRef]
  2. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–310.
  3. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion Diagnostics by Laser Raman and Fluorescence Techniques,” Prog. Energy Comb. Sci. 5, 304 (1979). [CrossRef]
  4. P. D. Maker, R. W. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength,” Phys. Rev. A 137, 801 (1965).
  5. M. Alden, K. A. Fredriksson, S. Wallin, “Application of a Two-Color Dye Laser in CARS Experiments for Fast Determination of Temperatures,” Appl. Opt. 23, 2053 (1984). [CrossRef] [PubMed]
  6. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979)W. M. Tolles, J. W. Nibler, J. R. McDonald, A. B. Harvey, “A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS),” Appl. Spectrosc. 31, 253 (1977). [CrossRef]
  7. R. J. Hall, United Technologies Research Center; personal communication (1984).
  8. Specifications of a Quantel YG-580 YAG Laser in Laser and Optronics 1988 Buying Guide—Industrial Directory and Technical Handbook (Gordon Publications, Dover, NJ, 1987), p. 256.
  9. D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas Phase Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983). [CrossRef]
  10. Adapted from a program by R. J. Hall, United Technologies Research Center, Hartford, CT.
  11. M. J. Deen, “The Design and Simulated Performance of a CARS Spectrometer Using Advanced Solid State Detectors,” Final Technical Report to NASA Lewis Research Center, Cleveland, OH (July1985).
  12. P. L. Richards, L. T. Greenberg, “Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter,” Infrared Millimeter Waves 16, 149 (1981).
  13. A. C. Beer, R. K. Willardson, Eds., Semiconductors and Semimetals, Vol. 18 (Academic, New York, 1981).
  14. G. D. Boyd, T. J. Bridges, E. G. Burkhardt, “Upconversion of 10.6 μ Radiation to the Visible and Second Harmonic Generation in HgS,” IEEE J. Quantum Electron. QE-4, 515 (1968). [CrossRef]
  15. T. Kostiuk, M. J. Mumma, “Remote Sensing by IR Heterodyne Spectroscopy,” Appl. Opt. 22, 2644 (1983). [CrossRef] [PubMed]
  16. J. S. Wells, F. R. Petersen, A. G. Maki, “Heterodyne Frequency Measurements of Carbonyl Sulphide Transitions at 26 and 51 THz. Improved OCS, OC13S, and OC34S Molecular Constants,” J. Mol. Spectrosc. 98, 404 (1983). [CrossRef]
  17. M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, “Sensitivity Limits of an Infrared Heterodyne Spectrometer for Astrophysical Applications,” Appl. Opt. 15, 427 (1976). [CrossRef] [PubMed]
  18. J. P. Rode, “HgCdTe Hybrid Focal Plane,” Infrared Phys. 24, 443 (1984). [CrossRef]
  19. Photonics Spectra, 19 (7), 83 (1985).
  20. M. A. Herman, M. Pessa, “Hg1−xCdxTe-Hg1−yCdyTe (0 ≤ x,y ≤ 1) Heterostructure: Properties, Epitaxy and Applications,” J. Appl. Phys. 57, 2671 (85).
  21. B. J. Peyton, A. J. DiNardo, S. C. Cohen, J. H. McElroy, R. J. Coates, “An Infrared Heterodyne Radiometer for High Resolution Measurements of Solar Radiation and Atmospheric Transmission,” IEEE J. Quantum Electron. QE-11, 569 (1975). [CrossRef]
  22. K. J. Linden, R. E. Reeder, “Diode Laser Arrays with High Power in the 4 to 5 μm Infrared Region,” Opt. Eng. 23, 685 (1984). [CrossRef]
  23. J. S. Seely, R. H. Hunneman, A. Whatley, “Spectrophotometer-Type Filters of the Highest Possible Performance, 2.5–4.0 μm,” Infrared Phys. 19, 429 (1979). [CrossRef]
  24. K. H. Yang, J. R. Morris, P. L. Richards, Y. R. Shen, “Phase Matched Far-Infrared Generation by Optical Mixing of Dye Laser Beams,” Appl. Phys. Lett. 23, 669 (1973). [CrossRef]
  25. Y. R. Shen, Ed., Non-Linear Infrared Generation (SpringerVerlag, New York, 1977). [CrossRef]
  26. M. J. Deen, E. D. Thompson, “The Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements Using N2,” Bull. Am. Phys. Soc. 31, 506 (1986).
  27. M. V. Hogden, J. Warner, “The Temperature Dependence of the Refractive Indices of Pure Lithium Niobate,” Phys. Lett. 22, 243 (1966). [CrossRef]
  28. D. R. Bosomworth, “The Far-Infrared Optical Properties of LiNbO3,” Appl. Phys. Lett. 9, 330 (1966). [CrossRef]
  29. B. H. Ahn, W. F. Clark, R. R. Shurtz, C. D. Bates, “Second Harmonic Generation in LiNbO3 and LiTaO3 in the Millimeter Wave Region,” J. Appl. Phys. 54, 1251 (1983). [CrossRef]
  30. B. H. Ahn, “Measurement of the Indices of Refraction and Absorption Coefficients of Dielectric Materials in the Millimeter Wave Region,” J. Appl. Phys. 54, 2123 (1983). [CrossRef]
  31. M. J. Deen, E. D. Thompson, “Design and Simulated Performance of a CARS Spectrometer for Dynamic Temperature Measurements,” Technical Digest of Conference on Lasers and Electro-OpticsSan Francisco (Optical Society of America, Washington, DC, 1986), paper TUK39.
  32. N. Piltch, NASA Lewis Research Center, personal communication (1985).
  33. J. H. Freeman, G. M. Hieftje, “A Comparison of Signal-to-Noise Ratios for Near Infrared Detectors,” Appl. Spectrosc. 38, 837 (1984). [CrossRef]
  34. L. P. Goss et al., “10 Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983). [CrossRef]
  35. A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited