OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 9 — May. 1, 1989
  • pp: 1638–1642

Wideband noise characteristics of a lead-salt diode laser: possibility of quantum noise limited TDLAS performance

Peter Werle, Franz Slemr, Manfred Gehrtz, and Christof Bräuchle  »View Author Affiliations


Applied Optics, Vol. 28, Issue 9, pp. 1638-1642 (1989)
http://dx.doi.org/10.1364/AO.28.001638


View Full Text Article

Enhanced HTML    Acrobat PDF (710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The wideband noise characteristics of a PbEuSe molecular beam epitaxy diode laser have been measured up to 500 MHz. The cutoff of the frequency dependent (1/f type) laser noise contribution was found to be 170 MHz for this particular laser. Above this cutoff frequency the photon shot noise dominates, as was demonstrated. A noise reduction of more than 2 orders of magnitude was observed in the shot noise limited domain when compared with the 1/f noise dominated region below 1 MHz. This finding indicates that a similar 2 orders of magnitude sensitivity improvement can be achieved in tunable diode laser absorption spectroscopy when frequency modulation techniques are applied instead of the more conventional derivative modulation below 1 MHz.

© 1989 Optical Society of America

History
Original Manuscript: July 18, 1988
Published: May 1, 1989

Citation
Peter Werle, Franz Slemr, Manfred Gehrtz, and Christof Bräuchle, "Wideband noise characteristics of a lead-salt diode laser: possibility of quantum noise limited TDLAS performance," Appl. Opt. 28, 1638-1642 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-9-1638


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980). [CrossRef]
  2. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.
  3. D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983). [PubMed]
  4. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, Holland, 1987). [CrossRef]
  5. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High Sensitivity Point Monitoring of Atmospheric Gases Employing Tunable Diode Lasers,” Appl. Opt. 17, 1806 (1978). [CrossRef] [PubMed]
  6. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132 (1986). [CrossRef] [PubMed]
  7. D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606 (1986). [CrossRef] [PubMed]
  8. D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am. B 4, 470 (1987). [CrossRef]
  9. D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: A Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726 (1987). [CrossRef] [PubMed]
  10. N.-Y. Chou, G. W. Sachse, “Single-Tone and Two-Tone AM–FM Spectral Calculations for Tunable Diode Laser Absorption Spectroscopy,” Appl. Opt. 26, 3584 (1987). [CrossRef] [PubMed]
  11. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of Approaches to Modulation Spectroscopy with GaAlAs Semiconductor Lasers: Application to Water Vapor,” Appl. Opt. 27, 2071 (1988). [CrossRef] [PubMed]
  12. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15 (1980). [CrossRef] [PubMed]
  13. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. B 2, 1510 (1985). [CrossRef]
  14. J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.
  15. N. C. Wong, J. L. Hall, “Servo Control of Amplitude Modulation in FM Spectroscopy: Demonstration of Shot-Noise-Limited Detection,” J. Opt. Soc. Am. B 2, 1527 (1985). [CrossRef]
  16. W. Lenth, “Optical Heterodyne Spectroscopy with Frequency-and Amplitude-Modulated Semiconductor Lasers,” Opt. Lett. 8, 575 (1983). [CrossRef] [PubMed]
  17. W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045 (1984). [CrossRef]
  18. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983). [CrossRef]
  19. W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263 (1985). [CrossRef]
  20. R. S. Eng, A. W. Mantz, T. R. Todd, “Low-Frequency Noise Characteristics of Pb-Salt Semiconductor Lasers,” Appl. Opt. 18, 1088 (1979). [CrossRef] [PubMed]
  21. J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97 (1928). [CrossRef]
  22. W. Budde, Physical Detectors of Optical Radiation (Academic, Orlando, FL, 1983).
  23. C. E. Hurwitz, “Detectors for the 1.1 and 1.6 Micrometer Wavelength Region,” Opt. Eng. 20, 658 (1981).
  24. W. Schottky, “Über spontane Stromschwankungen in verschie-denen Elektrizitätsleitern,” Ann. Phys. (Leipzig) 57, 541 (1918).
  25. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  26. Fraunhofer-Institute for Metrology, Heidenhofstrasse 8, D-7800 Freiburg, F.R. Germany,
  27. H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 110 (1928).
  28. The expected 6-dB noise reduction in the 1/f region is not seen due to attenuator induced feedback noise adding to the expected 6-dB reduction.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited