OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 9 — May. 1, 1989
  • pp: 1714–1719

Wedge shaped cell for highly absorbent liquids: infrared optical constants of water

David M. Wieliczka, Shengshan Weng, and Marvin R. Querry  »View Author Affiliations


Applied Optics, Vol. 28, Issue 9, pp. 1714-1719 (1989)
http://dx.doi.org/10.1364/AO.28.001714


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed an improved wedge shaped cell for measuring Lambert absorption coefficient spectra α(ν) of highly absorbent liquids. The design allows for accurate determination of the apex angle of the wedge, sealing the cell, and injection of the liquid without disassembling the cell. We measured α(ν) for water through the 500–12,500-cm−1 wavenumber region to determine the range of α(ν) for which the cell provided accurate measurements. We then determined the imaginary part of the complex refractive index N(ν) = n(ν) + ik(ν) from α(ν) and used Kramers-Kronig methods to compute n(ν) from k(ν).

© 1989 Optical Society of America

History
Original Manuscript: April 25, 1988
Published: May 1, 1989

Citation
David M. Wieliczka, Shengshan Weng, and Marvin R. Querry, "Wedge shaped cell for highly absorbent liquids: infrared optical constants of water," Appl. Opt. 28, 1714-1719 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-9-1714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Robertson, D. Williams, “Lambert Absorption Coefficients of Water in the Infrared,” J. Opt. Soc. Am. 61, 1316 (1971). [CrossRef]
  2. I. L. Tyler, G. Taylor, M. R. Querry, “Thin-Wedge-Shaped Cell for Highly Absorbent Liquids,” Appl. Opt. 17, 960 (1978). [CrossRef] [PubMed]
  3. L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).
  4. W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968). [CrossRef]
  5. V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970). [CrossRef]
  6. G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-nm Wavelength Region,” Appl. Opt. 12, 555 (1973). [CrossRef] [PubMed]
  7. K. F. Palmer, D. Williams, “Optical Properties of Water in the Near Infrared,” J. Opt. Soc. Am. 64, 1107 (1974). [CrossRef]
  8. H. D. Downing, D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656 (1975). [CrossRef]
  9. D. J. Segelstein, “The Complex Refractive Index of Water,” M.S. Thesis, U. Missouri–Kansas City (1981).
  10. M. N. Afsar, J. B. Hasted, “Measurements of the Optical Constants of Liquid H2O and D2O Between 6 and 450 cm−1,” J. Opt. Soc. Am. 67, 902 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited