OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 12 — Apr. 20, 1990
  • pp: 1730–1735

Optimization of a Raman shifted dye laser system for DIAL applications

Upendra N. Singh, Zhiping Chu, Rita Mahon, and Thomas D. Wilkerson  »View Author Affiliations

Applied Optics, Vol. 29, Issue 12, pp. 1730-1735 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an efficient Raman shifted dye laser system that generates tunable radiation at 765 and 940 nm with a bandwidth of 0.03 cm−1. Operating a Raman cell at hydrogen pressure below 14 atm, we recorded optimum first Stokes energy conversions of 45% and of 37% at 765 and 940 nm, respectively. Optical depth measurements made at the centers of twenty-five absorption lines in the P branch of the oxygen A band imply a high spectral purity for both the laser and the Raman shifted radiation, and thus indicate the feasibility of using the stimulated Raman scattered radiation for differential absorption lidar (DIAL) measurements.

© 1990 Optical Society of America

Original Manuscript: May 8, 1989
Published: April 20, 1990

Upendra N. Singh, Zhiping Chu, Rita Mahon, and Thomas D. Wilkerson, "Optimization of a Raman shifted dye laser system for DIAL applications," Appl. Opt. 29, 1730-1735 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979). [CrossRef] [PubMed]
  2. C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982). [CrossRef]
  3. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.
  4. T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982). [CrossRef]
  5. C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982). [CrossRef]
  6. C. L. Korb, C. Y. Weng, “Differential Absorption Lidar Technique for Measurement of the Atmospheric Pressure Profile,” Appl. Opt. 22, 3759–3770 (1983). [CrossRef] [PubMed]
  7. T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).
  8. T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).
  9. L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982). [CrossRef]
  10. E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” Proc. ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland (1984).
  11. C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981). [CrossRef]
  12. J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972). [CrossRef]
  13. W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979). [CrossRef]
  14. B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987). [CrossRef]
  15. U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).
  16. B. N. Perry, P. Robinowitz, D. S. Bomse, “Stimulated Raman Scattering with a Tightly Focused Pump,” Opt. Lett. 10, 146–148 (1985). [CrossRef] [PubMed]
  17. E. W. Washburn, Ed., International Critical Tables of Numerical Data (McGraw-Hill, New York), 7, 11 (1930).
  18. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987). [CrossRef]
  19. K. J. Ritter, “A High Resolution Spectroscopic Study of Absorption Line Profiles in the A-Band of Molecular Oxygen,” Ph.D Dissertation, U of Maryland (1986).
  20. K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987). [CrossRef]
  21. L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).
  22. P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed Injection Control of a Titanium-Doped Sapphire Laser,” Opt. Lett. 11, 712–714 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited