OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 12 — Apr. 20, 1990
  • pp: 1798–1804

Infrared two-dimensional acoustooptic deflector using a tellurium crystal

Dominique Souilhac, D. Billerey, and A. Gundjian  »View Author Affiliations

Applied Optics, Vol. 29, Issue 12, pp. 1798-1804 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first single element 2-D acoustooptic (2DAO) laser beam deflector using a tellurium crystal was designed and fabricated for laser wavelength applications from 5 to 20 μm. The giant values of the figure of merit M associated with these two AO interactions equal to 285,000 × 10−15 s3/kg, are between 2 and 3 orders of magnitude higher than germanium, the next best AO material for 10.6 μm. This latter value indicates that acoustic power densities inside the crystal of the order of 0.1 W/mm2 are sufficient to diffract 100% of the incident light. The experimental data confirm the predicted 13°/25 MHz deflection slope. The theoretical amplitude and frequency modulation characteristics of the 2DAO deflector are also evaluated.

© 1990 Optical Society of America

Original Manuscript: November 28, 1988
Published: April 20, 1990

Dominique Souilhac, D. Billerey, and A. Gundjian, "Infrared two-dimensional acoustooptic deflector using a tellurium crystal," Appl. Opt. 29, 1798-1804 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Souilhac, “Acoustooptic Diffraction and Deflection in Tellurium for the Carbon Dioxide Laser,” Ph.D. Thesis, McGill U., Electrical Engineering Department, Montreal (Aug.1987).
  2. J. E. B. Oliveira, “Generalized Anisotropic Acoustooptic Diffraction in Uniaxial Crystals,” Ph.D. Thesis, McGill U., Electrical Engineering Department, Montreal (Jan.1986).
  3. W. R. Klein, B. D. Cook, “Unified Approach to Ultrasonics Light Diffraction,” IEEE Trans. Sonics Ultrason. SU-14, 123–134 (1967). [CrossRef]
  4. J. E. B. Oliveira, E. L. Adler, D. Souilhac, A. Gundjian, “Acoustooptic Diffraction and Deflection in Tellurium at 10.6 μm,” in Proceedings, 1984 IEEE Ultrasonics Symposium (1984), pp. 332–340. [CrossRef]
  5. M. V. Klein, Optics (Wiley, New York, 1969).
  6. A. Jenkins, W. E. White, Fundamentals of Optics (McGrawHill, New York, 1965), Chap. 26.
  7. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976). [CrossRef]
  8. T. C. Lee, J. D. Zook, “Light Beam Deflection with Electrooptic Prisms,” IEEE J. Quantum Electron. QE-4, 442–443 (1968). [CrossRef]
  9. L. D. Dickson, “Optical Considerations for an Acoustooptic Deflector,” Appl. Opt. 11, 2196–2202 (1972). [CrossRef] [PubMed]
  10. C. H. Tsai, “Bragg Modulators for Optic Communications,” IEEE Trans. Circuits Syst. CAS-26, 1089–1098 (1979).
  11. C. P. Wang, R. L. Varwig, “Measurement of Phase Fluctuations in R. F. Chemical Laser Beam,” J. Appl. Phys. 50, 7917–7920 (1979). [CrossRef]
  12. J. P. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectrics Frequency Control UFFC-33, 485–499 (1986). [CrossRef]
  13. A. Korpel, “Acoustooptic, a Review of Fundamentals,” Proc. IEEE 69, 751–754 (1981).
  14. K. Pratt, Laser Communication Systems (Wiley, New York, 1968).
  15. S. Fukuda, T. Shiosaki, A. Kawabata, “Acoustooptic Properties of Tellurium at 10.6 μm,” J. Appl. Phys. 50, 3899–3905 (1979). [CrossRef]
  16. S. Fukuda, T. Karasaki, T. Shiosaki, A. Kawabata, “Photoelasticity and Acoustooptic Diffraction in Piezoelectric Semi-Conductors,” Phys. Rev. B 20, 4109–4119 (1979). [CrossRef]
  17. S. Ades, C. Champness, “Intermediate Infrared Optical Absorption in Intrinsic Tellurium,” J. Appl. Phys. 49, 4543–4548 (1978). [CrossRef]
  18. A. J. Fox, “Thermal Design for Germanium Acoustooptic Modulators,” Appl. Opt. 26, 872–884 (1987). [CrossRef] [PubMed]
  19. I. Shih, “Crystal Growth and Photoconductivity of Tellurium and Selenium–Tellurium Alloy,” Ph.D. Thesis, McGill U., Electrical Engineering Department (1981).
  20. D. Souilhac, “Two Dimensional Acoustooptic Deflector Using a Crystal of Tellurium for the CO2 Laser,” Technical Report, McGill U., Electrical Engineering Department (1986).
  21. P. D. Henshaw, H. M. Haskal, R. C. Knowlton, P. B. Scott, “Applicability of Laser Beam Steering for Rapid Access to 2D, 3D, and 4D Optical Memories,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 200–213 (1988).
  22. F. Sanchez, P. H. Kayoun, J. P. Huignard, “Two-Wave Mixing with Gain in Liquid Crystals at 10.6-μm Wavelength,” J. Appl. Phys. 64, 26–31 (1988). [CrossRef]
  23. J. M. Cruickshank, “Transversely Excited Atmospheric CO2 Laser Radar with Heterodyne Detection,” Appl. Opt. 18, 290–293 (1979). [CrossRef] [PubMed]
  24. B. Remy, “Imaging CO2 Laser Radar with Chirps Pulse Compression,” Ph.D. Thesis, U. Paris XI, Orsay (1986).
  25. D. Souilhac, D. Billerey, “Comparison of Hollow Metallic Waveguides with Optical Fibers for IR Laser Propagation,” Proc. Soc. Photo-Opt. Instrum. Eng., Los Angeles (1990), to be published.
  26. A. Waksberg, “Range Predictions for a CO2 Laser Communication System,” Appl. Opt. 20, 2688–2693 (1981). [CrossRef] [PubMed]
  27. M. J. Delanay, S. K. Kao, “Wideband Acoustooptic Bragg Cell,” in Proceedings, 1983 IEEE Ultrasonics Symposium (1983), pp. 431–436.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited