Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Matrix formalism for calculation of electric field intensity of light in stratified multilayered films

Not Accessible

Your library or personal account may give you access

Abstract

A new algorithm has been proposed for the calculation of the electric field intensity in stratified multilayered films when light is incident on the system. The algorithm utilizes matrix formulas based on Abeles’s formulas for the calculation of reflectance and transmittance. Equations for calculating patial absorptance due to a certain depth in the films are also derived. Some examples of the application of the electric field description are given for the analysis of three kinds of reflection spectroscopic methods which use metal surfaces: reflection–absorption, surface electromagnetic wave, and metal overlayer ATR methods. The algorithm given here offers a useful tool in understanding the mechanism of light absorption in various spectroscopic methods, and is convenient to use where intensity of the IR spectrum is of interest.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved