OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 14 — May. 10, 1990
  • pp: 2091–2098

Entropy optimized filter for pattern recognition

Michael Fleisher, Uri Mahlab, and Joseph Shamir  »View Author Affiliations

Applied Optics, Vol. 29, Issue 14, pp. 2091-2098 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Properties of the entropy function encountered in physics and information theory are employed in the generation of highly selective spatial filters for pattern recognition. Computer simulations and laboratory demonstrate efficient recognition of single patterns or classes even when these are submerged in experiments high level random noise.

© 1990 Optical Society of America

Original Manuscript: June 30, 1988
Published: May 10, 1990

Michael Fleisher, Uri Mahlab, and Joseph Shamir, "Entropy optimized filter for pattern recognition," Appl. Opt. 29, 2091-2098 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964). [CrossRef]
  2. H. J. Caulfield, W. T. Maloney, “Improved Discrimination in Optical Character Recognition,” Appl. Opt. 8, 2354–2356 (1969). [CrossRef] [PubMed]
  3. B. Braunecker, R. Hauck, A. W. Lohmann, “Optical Character Recognition Based on Nonredundant Correlation Measurements,” Appl. Opt. 18, 2746–2753 (1979). [CrossRef] [PubMed]
  4. H. H. Arsenault, Y. Sheng, J. Bulabois, “Modified Composite Filter for Pattern Recognition in the Presence of Noise with a Non-Zero Mean,” Opt. Commun. 63, 15–20 (1987). [CrossRef]
  5. G. F. Schils, D. W. Sweeney, “Rotation Invariant Correlation Filtering,” J. Opt. Soc. Am. A 2, 1411–1418 (1985). [CrossRef]
  6. T. Szoplik, H. H. Arsenault, “Shift and Scale-Invariant Anamorphic Fourier Correlator Using Multiple Circular Harmonic Filters,” Appl. Opt. 24, 3179–3183 (1985). [CrossRef] [PubMed]
  7. D. P. Casasent, W. A. Rozzi, “Modified MSF Synthesis by Fisher and Mean-Square-Error Techniques,” Appl. Opt. 25, 184–186 (1986). [CrossRef] [PubMed]
  8. Y. Sheng, J. Duvernoy, “Circular-Fourier-Radial-Mellin Transform Descriptors for Pattern Recognition,” J. Opt. Soc. Am. A 3, 885–887 (1986). [CrossRef] [PubMed]
  9. H. H. Arsenault, Y. Sheng, “Properties of Circular Harmonic Expansion for Rotation-Invariant Pattern Recognition,” Appl. Opt. 25, 3225–3229 (1986). [CrossRef] [PubMed]
  10. G. F. Schils, D. W. Sweeney, “Rotationally Invariant Correlation Filters for Multiple Images,” J. Opt. Soc. Am. A 3, 902–908 (1986). [CrossRef]
  11. J. Rosen, J. Shamir, “Distortion Invariant Pattern Recognition with Phase Filters,” Appl. Opt. 26, 2315–2319 (1987). [CrossRef] [PubMed]
  12. G. F. Schils, D. W. Sweeney, “Iterative Technique for the Synthesis of Distortion-Invariant Optical Correlation Filters,” Opt. Lett. 12, 307–309 (1987). [CrossRef] [PubMed]
  13. J. Rosen, J. Shamir, “Circular Harmonic Phase Filters for Efficient Rotation-Invariant Pattern Recognition,” Appl. Opt. 27, 2895–2899 (1988). [CrossRef] [PubMed]
  14. J. Rosen, J. Shamir, “Scale Invariant Pattern Recognition with Logarithmic Radial Harmonic Filters,” Appl. Opt. 28, 240–244 (1989). [CrossRef] [PubMed]
  15. D. Casasent, W.-T. Chang, “Correlation Synthetic Discriminant Functions,” Appl. Opt. 25, 2343–2350 (1986). [CrossRef] [PubMed]
  16. J. L. Horner, P. D. Gianino, “Applying the Phase-Only Filter Concept to the Synthetic Discriminant Function Correlation Filter,” Appl. Opt. 24, 851–855 (1985). [CrossRef] [PubMed]
  17. J. Shamir, H. J. Caulfield, J. Rosen, “Pattern Recognition Using Reduced Information Content Filters,” Appl. Opt. 26, 2311–2314 (1987). [CrossRef] [PubMed]
  18. A. Mahalanobis, B. V. K. V. Kumar, D. P. Casasent, “Minimum Average Correlation Energy Filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  19. R. D. Juday, B. J. Daiuto, “Relaxation Method of Compensation in an Optical Correlator,” Opt. Eng. 26, 1094–1101 (1987). [CrossRef]
  20. See, for example, A. Ilobson, Concepts in Statistical Mechanics (Gordon & Breach, New York, 1971).
  21. C. E. Shannon, W. Weaver, The Mathematical Theory of Communication (U. Illinois Press, Urbana, 1949).
  22. R. Kikuchi, B. H. Soffer, “Maximum Entropy Image Restoration. I. The Entropy Expression,” J. Opt. Soc. Am. 67, 1656–1665 (1977). [CrossRef]
  23. R. K. Bryan, J. Skilling, “Maximum Entropy Image Reconstruction From Phaseless Fourier Data,” Opt. Acta 33, 287–299 (1986). [CrossRef]
  24. E. S. Meinel, “Maximum-Entropy Image Restoration: Lagrange and Recursive Techniques,” J. Opt. Soc. Am. A 5, 25–29 (1988). [CrossRef]
  25. J. L. Horner, P. D. Gianino, “Phase-Only Matched Filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  26. J. L. Horner, J. R. Leger, “Pattern Recognition with Binary Phase-Only Filter,” Appl. Opt. 24, 609–611 (1985). [CrossRef] [PubMed]
  27. H. J. Caulfield, “Role of the Horner Efficiency in the Optimization of Spatial Filters for Optical Pattern Recognition,” Appl. Opt. 21, 4391–4392 (1982). [CrossRef] [PubMed]
  28. U. Mahlab, M. Fleisher, J. Shamir, “Error Probability in Optical Pattern Recognition,” Opt. Commun. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited