OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 15 — May. 20, 1990
  • pp: 2246–2258

Picosecond laser system continuously tunable in the 0.6–4-μm range

Herman Vanherzeele  »View Author Affiliations


Applied Optics, Vol. 29, Issue 15, pp. 2246-2258 (1990)
http://dx.doi.org/10.1364/AO.29.002246


View Full Text Article

Enhanced HTML    Acrobat PDF (1889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A continuously tunable picosecond laser system has been developed that operates in two modes: cw (100 MHz) and pulsed (10 Hz). In either mode the tuning range is approximately the same: from 0.6–4 μm. The pulse duration can also be selected: either short (typically 5 ps) or long (typically 50 ps) pulses are available. The average output power is in the milliwatt range for both repetition rates. In addition, both modes of operation are simultaneously available, and they are mutually synchronized. The system is based on a mode locked high power Nd:YLF laser which synchronously pumps a dye laser and seeds a Nd:YLF regenerative amplifier. Frequency mixing and parametric generation/amplification in KTiOPO4 are used to obtain the large tunability.

© 1990 Optical Society of America

History
Original Manuscript: August 28, 1989
Published: May 20, 1990

Citation
Herman Vanherzeele, "Picosecond laser system continuously tunable in the 0.6–4-μm range," Appl. Opt. 29, 2246-2258 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-15-2246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989). [CrossRef] [PubMed]
  2. L. F. Mollenauer, “Color Center Lasers,” in Laser Handbook, Vol. 4, M. L. Stitch, M. Bass, Eds. (North-Holland, Amsterdam, 1985), pp. 143–228.
  3. M. D. Dawson, T. F. Boggess, A. L. Smirl, “Picosecond and Femtosecond Pulse Generation near 1000 nm from a Frequency-Doubled Nd:YAG-Pumped cw Dye Laser,” Opt. Lett. 12, 590–592 (1987). [CrossRef] [PubMed]
  4. A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable Picosecond Pulses Around 1.3 μm Generated by a Synchronously Pumped Infrared Dye Laser,” Opt. Lett. 8, 205–207 (1983). [CrossRef] [PubMed]
  5. W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981). [CrossRef]
  6. K. Kato, “Ar-Ion-Laser-Pumped Infrared Dye Laser at 875–1084 nm,” Opt. Lett. 9, 544–545 (1984). [CrossRef] [PubMed]
  7. I. Ledoux, J. Badan, J. Zyss, “Generation of High-Peak Power Tunable Infrared Femtosecond Pulses in an Organic Crystal: Application to Time Resolution of Weak Infrared Signals,” J. Opt. Soc. Am. B 4, 987–997 (1987). [CrossRef]
  8. See e.g., Y. R. Shen, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1977); see also, A. Lauberau, “Optical Nonlinearities with Ultrashort Pulses,” in Ultrashort Laser Pulses and Applications, W. Kaiser, Ed. (Springer-Verlag, Berlin, 1988). [CrossRef]
  9. D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987). [CrossRef]
  10. D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984). [CrossRef]
  11. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976). [CrossRef]
  12. J. D. Bierlein, H. Vanherzeele, “Potassium Titanyl Phosphate: Properties and New Applications,” J. Opt. Soc. Am. B 6, 622–633 (1989). [CrossRef]
  13. H. Vanherzeele, “Recent Advances in the Generation of Picosecond Tunable Infrared Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 1104, 44–60 (1989).
  14. G. A. Massey, T. M. Loehr, L. J. Willis, J. C. Johnson, “Raman and Electrooptic Properties of Potassium Titanate Phosphate,” Appl. Opt. 19, 4136–4137 (1980). [CrossRef] [PubMed]
  15. R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989). [CrossRef]
  16. M. D. Dawson, W. A. Schroeder, D. P. Norwood, A. L. Smirl, “Wavelength-Tunable Synchronous Amplification of Picosecond Dye-Laser Pulses Near 1 μm,” Opt. Lett. 14, 364–366 (1989). [CrossRef] [PubMed]
  17. A. J. Taylor, J. P. Roberts, T. R. Gosnell, C. S. Lester, “Synchronously Pumped Subpicosecond Dye Oscillator-Amplifier System,” Opt. Lett. 14, 444–446 (1989). [CrossRef] [PubMed]
  18. H. Vanherzeele, “Optimization of a cw Mode Locked Frequency-Doubled Nd:LiYF4 Laser,” Appl. Opt. 27, 3608–3615 (1988). [CrossRef] [PubMed]
  19. H. Vanherzeele, “Continuous-Wave Dual Rod Nd:YLF Laser with Dynamic Lensing Compensation,” Appl. Opt. 28, 4042–4044 (1989). [CrossRef] [PubMed]
  20. H. Vanherzeele, “Thermal Lensing Measurement and Compensation in a Continuous Wave Mode Locked Nd:YLF Laser,” Opt. Lett. 13, 369–371 (1988). [CrossRef] [PubMed]
  21. H. Vanherzeele, “Characterization and Active Stabilization of a Harmonically Modulated Continuous-Wave Nd:LiYF4 Laser,” Rev. Sci. Instrum. 60, 592–597 (1989). [CrossRef]
  22. M. G. Roelofs, “Identification of Ti3+ in Potassium Titanyl Phosphate and its Possible Role in Laser Damage,” J. Appl. Phys. 65, 4976–4982 (1989). [CrossRef]
  23. H. Vanherzeele, “Generation of Tunable Infrared Picosecond Pulses at 100 MHz by Difference Frequency Mixing in KTiOPO4,” Opt. Lett. 14, 728–730 (1989). [CrossRef] [PubMed]
  24. H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, “Index of Refraction Measurements and Parametric Generation in Hydrothermally Grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988). [CrossRef] [PubMed]
  25. C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976). [CrossRef]
  26. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.
  27. K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989). [CrossRef]
  28. J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989). [CrossRef]
  29. A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980). [CrossRef]
  30. A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979). [CrossRef]
  31. J. S. Coe, P. Maine, P. Bado, “Regenerative Amplification of Picosecond Pulses in Nd:YLF: Gain Narrowing and Gain Saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988). [CrossRef]
  32. J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.
  33. R. Popovitz-Biro et al., “A New Class of Stable Head-to-Tail (Z-type) Langmuir-Blodgett Films—A Second Harmonic Generation Study,” J. Am. Chem. Soc. 110, 2672–2674 (1988). [CrossRef]
  34. G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.
  35. I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989). [CrossRef]
  36. G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.
  37. H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989). [CrossRef]
  38. R. Popovitz-Biro et al., “A New Series of Amphiphilic Molecules Forming Stable Z-Type (polar) Langmuir-Blodgett Films,” J. Am. Chem. Soc. 112, 2498–2506 (1990). [CrossRef]
  39. B. K. Nayar, H. Vanherzeele, “Dual-Wavelength Ultrafast Complete Optical Switching in a Polarization-Maintaining Fiber,” IEEE Photgr. Techn. Lett. (submitted).
  40. H. Vanherzeele, “Optical Parametric Conversion of Picosecond Pulses in KTiOPO4,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper TuN3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited