OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 15 — May. 20, 1990
  • pp: 2282–2288

Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

David A. Glenar, Donald E. Jennings, and Shacher Nadler  »View Author Affiliations


Applied Optics, Vol. 29, Issue 15, pp. 2282-2288 (1990)
http://dx.doi.org/10.1364/AO.29.002282


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A CdTe phase modulator and low power rf source have been used with Pb-salt tunable diode lasers operating near 8 μm to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

© 1990 Optical Society of America

History
Original Manuscript: January 13, 1989
Published: May 20, 1990

Citation
David A. Glenar, Donald E. Jennings, and Shacher Nadler, "Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy," Appl. Opt. 29, 2282-2288 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-15-2282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: a New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  2. E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983). [CrossRef]
  3. E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984). [CrossRef]
  4. D. E. Cooper, T. F. Gallagher, “Double Frequency Modulation Spectroscopy: High Modulation Frequency with Low Bandwidth Detectors,” Appl. Opt. 24, 1327–1334 (1985). [CrossRef] [PubMed]
  5. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. 2, 1510–1526 (1985). [CrossRef]
  6. C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Tone-Burst Modulated Color-Center-Laser Spectroscopy,” Opt. lett. 8, 310–312 (1983). [CrossRef] [PubMed]
  7. H. Adams, J. L. Hall, R. F. Curl, J. V. V. Kasper, F. K. Tittel, “Sensitivity Improvement of Tone-Burst Modulated Spectroscopy with a Color-Center Laser,” J. Opt. Soc. Am. B 1, 710–714 (1984). [CrossRef]
  8. D. E. Cooper, T. F. Gallagher, “Frequency Modulation Spectroscopy with a CO2 Laser: Results and Implications for Ultra-sensitive Point Monitoring of the Atmosphere,” Appl. Opt. 24, 710–716 (1985). [CrossRef]
  9. G. Melandrone, F. Cappellani, G. Restelli, “Frequency Jitter from Mechanical Vibrations in a Diode Laser Mounted on a Closed-Cycle Refrigerator, Appl. Spectrosc. 39, 63–00 (1985). [CrossRef]
  10. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-PPT Level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  11. D. E. Jennings, “Laboratory Diode Laser Spectroscopy in Molecular Planetary Astronomy,” J. Quant. Spectrosc. Radiat. Trans. SRT 40, 221–238 (1988). [CrossRef]
  12. M. Gehrtz, W. L. Lenth, A. T. Young, H. S. Johnston, “High-Frequency Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132–134 (1986). [CrossRef] [PubMed]
  13. D. E. Cooper, J. P. Watjen, “Two-tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608 (1986). [CrossRef] [PubMed]
  14. D. E. Cooper, R. E. Warren, “Atmospheric Trace Gas Detection Using High-Frequency Optical Heterodyne Spectroscopy,” Proceedings of the OSA/IEEE Conference on Lasers and Electro-Optics, Baltimore MD, April 26–May 1, 1987, paper MA2.
  15. N. Y. Chou, G. W. Sachse, “Single-Tone and Two-Tone AM-FM Spectral Calculations for Tunable Diode Laser Absorption Spectroscopy,” Appl. Opt. 26, 3584–3587 (1987). [CrossRef] [PubMed]
  16. J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead-Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988). [CrossRef] [PubMed]
  17. M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986). [CrossRef] [PubMed]
  18. J. J. Hillman, D. E. Jennings, J. L. Faris, “Diode Laser–CO2 Laser Heterodyne Spectrometer: Measurement of 2sQ(1,1) in 2ν2–ν2 of NH3,” Appl. Opt. 18, 1808–1811 (1979). [CrossRef] [PubMed]
  19. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth Measurements of Tunable Diode Lasers Using Heterodyne and Etalon Techniques,” Appl. Opt. 21, 3961–3965 (1982). [CrossRef] [PubMed]
  20. G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  21. E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, “Residual Amplitude Modulation in Laser Electro-Optic Phase Modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  22. C. N. Harward, B. D. Sidney, “Excess Noise in Pb1−xSnxSe Semiconductor Lasers,” NASA Heterodyne Systems and Technology Conference, NASA CP-2138, Williamsburg, VA, (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited