OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 20 — Jul. 10, 1990
  • pp: 3007–3011

Dependence of 3-D optical transfer functions on the pinhole radius in a fluorescent confocal optical microscope

Shigeharu Kimura and Chusuke Munakata  »View Author Affiliations

Applied Optics, Vol. 29, Issue 20, pp. 3007-3011 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (633 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resolution of a fluorescent confocal scanning optical microscope (CSOM) is superior to that of a conventional fluorescent optical microscope. To attain this superiority, the fluorescent CSOM uses a pinhole in front of the detector. Thus, the resolution of the CSOM is dependent on the pinhole radius. Three-dimensional optical transfer functions are calculated for the various radii to elucidate this dependence. The results show that a CSOM with a radius smaller than ~1 optical unit has a bandwidth comparable with that of an infinitely small radius.

© 1990 Optical Society of America

Original Manuscript: January 17, 1989
Published: July 10, 1990

Shigeharu Kimura and Chusuke Munakata, "Dependence of 3-D optical transfer functions on the pinhole radius in a fluorescent confocal optical microscope," Appl. Opt. 29, 3007-3011 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. R. Sheppard, A. Choudhury, “Image Formation in the Scanning Microscope,” Opt. Acta 24, 1051–1073 (1977). [CrossRef]
  2. T. Wilson, A. R. Carlini, “Size of the Detector in Confocal Imaging Systems,” Opt. Lett. 12, 227–229 (1987). [CrossRef] [PubMed]
  3. T. Wilson, A. R. Carlini, “Three-Dimensional Imaging in Confocal Imaging Systems with Finite Sized Detectors,” J. Microsc. 149, 51–66 (1988). [CrossRef]
  4. I. J. Cox, C. J. R. Sheppard, T. Wilson, “Super-Resolution by Confocal Fluorescent Microscopy,” Optik 60, 391–396 (1982).
  5. K. Carlsson, N. Åslund, “Confocal Imaging for 3-D Digital Microscopy,” Appl. Opt. 26, 3232–3238 (1987). [CrossRef] [PubMed]
  6. W. B. Amos, J. G. White, M. Fordham, “Use of Confocal Imaging in the Study of Biological Structures,” Appl. Opt. 26, 3239–3243 (1987). [CrossRef] [PubMed]
  7. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, N. Nanninga, “3-Dimensional Imaging of Biological Structures by High Resolution Confocal Scanning Laser Microscopy,” Scanning Microsc. 2, 33–40 (1988). [PubMed]
  8. O. Nakamura, S. Kawata, S. Minami, “Three-Dimensional Imaging Characteristics of Confocal Laser-Scanning Microscope,” Oyo Butsuri 57, 784–791 (1988), in Japanese.
  9. C. J. R. Sheppard, “The Spatial Frequency Cut-Off in Three-Dimensional Imaging,” Optik 72, 131–133 (1986).
  10. C. J. R. Sheppard, “The Spatial Frequency Cut-Off in Three-Dimensional Imaging II,” Optik 74, 128–129 (1986).
  11. S. Kimura, C. Munakata, “Calculation of Three-Dimensional Optical Transfer Function for a Confocal Scanning Fluorescent Microscope,” J. Opt. Soc. Am. A 6, 1015–1019 (1989). [CrossRef]
  12. I. J. Cox, “Scanning Optical Fluorescence Microscopy,” J. Microsc. 133, 149–154 (1984). [CrossRef] [PubMed]
  13. H. H. Hopkins, “The Frequency Response of a Defocused Optical System,” Proc. R. Soc. London Ser. A 231, 91–103 (1955). [CrossRef]
  14. P. A. Stokseth, “Properties of a Defocused Optical System,” J. Opt. Soc. Am. 59, 1314–1321 (1969). [CrossRef]
  15. M. Y. Chiu, H. H. Barrett, R. G. Simpson, C. Chou, J. W. Arendt, G. R. Gindi, “Three-Dimensional Radiographic Imaging with a Restricted View Angle,” J. Opt. Soc. Am. 69, 1323–1333 (1979). [CrossRef]
  16. N. Streibl, “Fundamental Restrictions for 3-D Light Distributions,” Optik 66, 341–354 (1984).
  17. B. R. Frieden, “Optical Transfer of the Three-Dimensional Object,” J. Opt. Soc. Am. 57, 56–66 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited