OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 25 — Sep. 1, 1990
  • pp: 3643–3653

Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide

R. A. Rooth, A. J. L. Verhage, and L. W. Wouters  »View Author Affiliations

Applied Optics, Vol. 29, Issue 25, pp. 3643-3653 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photoacoustic determination of the ammonia concentration in atmospheric air by absorption of CO2 laser radiation at 9.22 μm is influenced by the presence of H2O and CO2. Kinetic cooling due to the coupling of excited CO2 and N2 levels causes important changes in phase and amplitude of the photoacoustic signal. Theoretical background is presented to deduce the correct NH3 concentration from the signal. The experimental setup used to perform field measurements is described. Adhesion of NH3 to the walls of the resonant photoacoustic cell was investigated. Temperature effects are treated. Field data of NH3 and H2O concentrations are presented.

© 1990 Optical Society of America

Original Manuscript: August 1, 1989
Published: September 1, 1990

R. A. Rooth, A. J. L. Verhage, and L. W. Wouters, "Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide," Appl. Opt. 29, 3643-3653 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Erisman, A. W. M. Vermetten, W. A. H. Asman, A. Wayers-IJpelaan, J. Slanina, “Vertical Distribution of Gases and Aerosols: The Behaviour of Ammonia and Related Components in the Lower Atmosphere,” Atmos. Environ. 22, 1153–1160 (1988). [CrossRef]
  2. S. M. Beck, “Cell Coatings to Minimize Sample (NH3 and N2H4) Adsorption for Low Level Photoacoustic Detection,” Appl. Opt. 24, 1761–1763 (1985). [CrossRef] [PubMed]
  3. A. D. Wood, M. Camac, E. T. Gerry, “Effects of 10.6 μ Laser Induced Air Chemistry on the Atmospheric Refractive Index,” Appl. Opt. 10, 1877–1884 (1971). [CrossRef] [PubMed]
  4. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746–3749 (1978). [CrossRef] [PubMed]
  5. P. L. Meyer, M. W. Sigrist, “Air-Pollution Monitoring With Mobile CO2-Laser Photo-Acoustic System,” Ph.D. Thesis 8651 ETH Zurich (of P. L. Meyer) (1988).
  6. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, L. van den Beld, “On the Photo-Acoustic Measurement of Ammonia in the Atmosphere,” in Proceedings, Fourth International Conference on Infrared Physics (ETH, Zurich, 1988), pp. 593–595.
  7. J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Field and Laboratory Experiments on the 8 to 14 μm Spectral Window of the Terrestrial Atmosphere,” Int. J. Infrared Phys. Millimeter Waves 7, 683–713 (1986). [CrossRef]
  8. L. S. Rothman et al., “The HITRAN Data Base: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  9. F. E. Hovis, C. B. Moore, “Vibrational Relaxation of NH3 (ν2),” J. Chem. Phys. 69, 4947–4950 (1978). [CrossRef]
  10. F. E. Hovis, C. M. Moore, “Temperature Dependence of Vibrational Energy Transfer in NH3 and H218O,” J. Chem. Phys. 72, 2397–2402 (1980). [CrossRef]
  11. V. P. Zharov, V. S. Letokhov, Laser Opto-Acoustic Spectroscopy (Springer-Verlag, New York, 1986).
  12. S. H. Bauer, J. F. Caballero, R. Curtis, J. R. Wiesenfeld, “Vibrational Relaxation Rates of CO2 (001) with Various Collision Partners for T <300 K,” J. Chem. Phys. 91, 1778–1785 (1987). [CrossRef]
  13. A. Yu. Volkov, A. I. Demin, A. N. Logunov, E. M. Kudryavtsev, N. N. Sobolev, “Analysis of Data on the Vibrational Relaxation Constants in CO2-N2-H2O Mixtures and Optimization of a Gasdynamic CO2 Laser,” J. Sov. Laser Res. (U.S.) 3, 148–162 (1982). [CrossRef]
  14. A. J. Zuckerwar, W. A. Griffin, “Effect of Water Vapour on Sound Absorption in Nitrogen at Low Frequency/Pressure Ratios,” J. Acoust. Soc. Am. 69, 150–154 (1981). [CrossRef]
  15. R. L. Taylor, S. Bitterman, Survey of Vibrational Relaxation Data for Processes Important in the CO2-N2 Laser System,” Rev. Mod. Phys. 41, 26–47 (1969). [CrossRef]
  16. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980).
  17. E. Kritchman, S. Shtrikman, M. Slatkine, “Resonant Optoacoustic Cells for Trace Gas Analysis,” J. Opt. Soc. Am. 68, 1257–1271 (1978). [CrossRef]
  18. F. Harren, “The Photoacoustic Effect, Refined and Applied to Biological Problems,” Thesis, Catholic University of Nijmegen, The Netherlands (1988).
  19. P. M. Morse, K. U. Ingard, Theoretical Acoustics (Princeton U.P., 1986).
  20. B. D. Kay, T. D. Raymond, M. E. Coltrin, “Observation of Direct Multiquantum Vibrational Excitation in Gas-Surface Scattering: NH3 on Au(111),” Phys. Rev. Lett. 59, 2792–2794 (1990). [CrossRef]
  21. M. J. Kavaya, J. S. Margolis, M. S. Shumate, “Optoacoustic Detection Using Stark Modulation,” Appl. Opt. 18, 2602–2606 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited