OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 27 — Sep. 20, 1990
  • pp: 3905–3915

Numerical solution of the exact cavity equations of motion for an unstable optical resonator

Mark S. Bowers and Stephen E. Moody  »View Author Affiliations


Applied Optics, Vol. 29, Issue 27, pp. 3905-3915 (1990)
http://dx.doi.org/10.1364/AO.29.003905


View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman [ “ Exact Cavity Equations for Lasers with Large Output Coupling,” Appl. Phys. Lett. 36, 412– 414 ( 1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

© 1990 Optical Society of America

History
Original Manuscript: October 24, 1989
Published: September 20, 1990

Citation
Mark S. Bowers and Stephen E. Moody, "Numerical solution of the exact cavity equations of motion for an unstable optical resonator," Appl. Opt. 29, 3905-3915 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-27-3905

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited