OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 28 — Oct. 1, 1990
  • pp: 4133–4144

Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar

David Rees and I. Stuart McDermid  »View Author Affiliations


Applied Optics, Vol. 29, Issue 28, pp. 4133-4144 (1990)
http://dx.doi.org/10.1364/AO.29.004133


View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reevaluate the performance of an incoherent Doppler lidar system operating at 354.7 nm, based on recent but well-proven Nd:YAG laser technology and currently available optical sensors. For measurements in the lower troposphere, up to ~5 km altitude, and also in the Junge-layer of the lower stratosphere, a wind component accuracy of ± 2 m/s and a vertical resolution of 1 km should be obtained with a single pulse from a 1-J laser, operating at Polar Platform altitudes (700–850 km) and high scan angles (55°). For wind measurements in the upper troposphere (above ~5 km altitude) and stratosphere (above and below the Junge layer) the concentration of scatterers is much lower and higher energies would be required to maintain ± 2 m/s accuracy and 1 km vertical resolution, using single laser pulses. Except for the region in the vicinity of the tropopause (10 km altitude), a 5-J pulse would be appropriate to make measurements in these regions. The worst case is encountered near 10 km altitude, where we calculate that a 15-J pulse would be required. To reduce this energy requirement, we would propose to degrade the altitude resolution from 1 km to 2–3 km, and also to consider averaging multiple pulses. Degrading the vertical and horizontal resolution could provide an acceptable method of obtaining the required wind accuracy without the penalty of using a laser of higher output power. We believe that a Doppler lidar system, employing a near ultraviolet laser with a pulse energy of 5 J, could achieve the performance objectives required by the major potential users of a global space-borne wind observing system.

© 1990 Optical Society of America

History
Original Manuscript: August 25, 1989
Published: October 1, 1990

Citation
David Rees and I. Stuart McDermid, "Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar," Appl. Opt. 29, 4133-4144 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-28-4133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).
  2. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. a. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503–3513 (1983). [CrossRef] [PubMed]
  3. D. Rees, T. J. Fuller-Rowell, R. Gordon, T. L. Killeen, P. B. Hays, L. E. Wharton, N. W. Spencer, “A Comparison of The Wind Observations from the Dynamics Explorer Satellite with the Predictions of a Global Time-Dependent Model,” Planet. Space Sci. 31, 1299–1314 (1983). [CrossRef]
  4. D. Rees et al., “The Westward Thermospheric Jet-Stream of the Evening Auroral Oval,” Planet. Space Sci. 33, 425–456 (1985). [CrossRef]
  5. P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Wind from Space. 1. Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136–1141 (1982). [CrossRef] [PubMed]
  6. D. Rees, P. A. Rounce, P. Charleton, T. J. Fuller-Rowell, I. McWhirter, K. Smith, “Thermospheric Winds During the Energy Budget Campaign: Ground-Based Fabry-Perot Observations Supported by Dynamical Simulations with a Three-Dimensional, Time-Dependent Model,” J. Geophys. Res. 50, 202–211 (1982).
  7. W. R. Skinner, P. B. Hays, V. J. Abreu, “Optimization of a Triple Etalon Interferometer,” Appl. Opt. 26, 2817–2827 (1987). [CrossRef] [PubMed]
  8. D. Rees, “Balloon-Based Interferometric Techniques,” in Proceedings of the NASA Symposium on Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (Deepak Publishing, Hampton, VA, 1985), pp. 109–114.
  9. D. J. McCleese, J. S. Margolis, “Remote Sensing of Stratospheric and Mesospheric Winds by Gas Correlation Electrooptic Phase-Modulation Spectroscopy,” Appl. Opt. 22, 2528–2534 (1983). [CrossRef] [PubMed]
  10. D. M. Rider, J. T. Schofield, D. J. McCleese, “Electrooptic Phase Modulation Gas Correlation Spectroradiometry,” in Technical Digest, Toptical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques (Optical Society of America, Washington, DC, 1987), pp. 226–229.
  11. C. P. Arnold et al. “Results of an Observing System Simulation Experiment Based on the Proposed WINDSAT Instrument,” in Proceedings of the NASA Symposium on Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (A. Deepak Publishing, Hampton, VA, 1985), pp. 81–88.
  12. V. J. Abreu, “Wind Measurements from an Orbital Platform Using a Lidar System with Incoherent Detection: An Analysis,” Appl. Opt. 18, 2992–2997 (1979). [CrossRef] [PubMed]
  13. P. B. Hays, V. J. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 Micron Space-Borne Wind Sensor,” in Preprint Volume, Conference on Satellite/Remote Sensing Applications, 25–29 June, Clearwater Beach (American Meteorological Society, Boston, MA, 1984), pp. 266–271.
  14. W. E. Baker, R. J. Curran, Eds., Proceedings of the NASA Symposium on Global Wind Measurements (A. Deepak Publishing, Hampton, VA, 1985).
  15. R. T. Menzies, “Doppler Lidar Atmospheric Wind Sensors: A Comparative Performance Evaluation for Global Measurement Applications from Earth Orbit,” Appl. Opt. 25, 2546–2553 (1986). [CrossRef] [PubMed]
  16. Y. K. Park, G. Giuliani, R. L. Byer, “Stable Single-Axial-Mode Operation of an Unstable-Resonator Nd:YAG Oscillator by Injection Locking,” Opt. Lett. 5, 96–98 (1980). [CrossRef] [PubMed]
  17. Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411–416 (1981). [CrossRef]
  18. Y. K. Park, G. Giuliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984). [CrossRef]
  19. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett. 10, 62–64 (1985). [CrossRef] [PubMed]
  20. D. Rees, P. A. Rounce, I. McWhirter, A. F. D. Scott, A. H. Greenaway, W. Towlson, “Observations of Atmospheric Absorption Lines from a Stabilised Balloon Platform and Measurements of Stratospheric Winds,” J. Phys. E 15, 191–206 (1982). [CrossRef]
  21. D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A Stable, Rugged Capacitance-Stabilised Piezo-Electric Scanned Fabry-Perot Etalon,” J. Phys. E 14, 1320–1325 (1981). [CrossRef]
  22. D. Rees, I. McWhirter, P. A. Rounce, F. E. Barlow, “Miniature Imaging Photon Detectors: II Devices with Transparent Windows,” J. Phys. E 14, 229–233 (1981). [CrossRef]
  23. I. McWhirter, D. Rees, A. H. Greenaway, “Miniature Imaging Photon Detectors III. An Assessment of the Performance of the Resistive Anode IPD,” J. Phys. E 15, 145–150 (1982). [CrossRef]
  24. “LAWS: Laser Atmospheric Wind Sounder,” Earth Observing System Volume IIg, NASA, Washington, DC (1987).
  25. D. Rees, T. J. Fuller-Rowell, A. Lyons, T. L. Killeen, P. B. Hays, “Stable and Rugged Etalon for the Dynamics Explorer Fabry-Perot Interferometer. I: Design and Construction,” Appl. Opt. 21, 3896–3902 (1982). [CrossRef] [PubMed]
  26. T. L. Killeen, P. B. Hays, N. W. Spencer, L. E. Wharton, “Neutral Winds in the Polar Thermosphere as Measured from Dynamics Explorer,” Geophys. Res. Lett. 9, 957–960 (1982). [CrossRef]
  27. R. Hertel, ITT; private communication (1987).
  28. D. Rees, I. McWhirter, D. Wade, “Development of a Doppler Wind Lidar System for Atmospheric Wind Measurements,” in Proceedings of the Eighth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA SP 276 (1987), pp. 99–106.
  29. A. Rosenberg, J. Sroga, “Development of a 0.5 μn Incoherent Doppler Lidar for Space Application,” in Proceedings of the NASA Symposium on Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (Deepak Publishing, Hampton, VA, 1985), pp. 157–162.
  30. J. W. Fitzgerald, “Effect of Relative Humidity on the Aerosol Backscattering Coefficient at 0.694 and 10.6-μm Wavelengths,” Appl. Opt. 23, 411–418 (1984). [CrossRef] [PubMed]
  31. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteor. 20, 184–194 (1981). [CrossRef]
  32. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  33. M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air Pollution Measurement by Active Remote Sensing Techniques,” NASA Contractor Report CR-132724 (1975).
  34. “LASA: Lidar Atmospheric Sounder and Altimeter,” Earth Observing System Volume IId, NASA, Washington, DC (1987).
  35. G. Megie, R. T. Menzies, “Complementarity of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef] [PubMed]
  36. “U.S. Standard Atmosphere,” NOAA-S/T 76–1562, U.S. Government Printing Office, Washington, DC (1976).
  37. R. T. H. Collis, P. B. Russel, “Lidar Measurement of Particles and Gases,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer Verlag, Berlin, 1976).
  38. I. S. McDermid, JPL–TMF unpublished results (1987).
  39. L. Elterman, “UV, Visible and IR Attenuation for Altitudes to 50 km, 1968,” AFCRL-68-0153 (1968).
  40. M. P. Thekaekara, “Extraterrestrial Solar Spectrum, 3000–6100 Å at 1 Å Intervals,” Appl. Opt. 13, 518–522 (1974). [CrossRef] [PubMed]
  41. J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603–2618 (1983). [CrossRef] [PubMed]
  42. J. M. Gagne, J. P. Saint-Dizier, M. Picard, “Méthode d’echantillonage des fonctions déterministes en spectrscopie: application á un spectrombtre multicanal par comptage photonique,” Appl. Opt. 13, 581–588 (1974). [CrossRef] [PubMed]
  43. G. Hernandez, Fabry-Perot Interferometers (Cambridge U.P., Cambridge, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited