OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 28 — Oct. 1, 1990
  • pp: 4182–4191

Mie scattering used to determine spherical bubble oscillations

R. Glynn Holt and Lawrence A. Crum  »View Author Affiliations

Applied Optics, Vol. 29, Issue 28, pp. 4182-4191 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Linearly polarized laser light is scattered from an oscillating, acoustically levitated bubble, and the scattered intensity is measured with a suitable photodetector. The output photodetector current is converted into a voltage and digitized. For spherical bubbles, the scattered intensity Irel(R,θ,t) as a function of radius R and angle θ is calculated theoretically by solving the boundary value problem (Mie theory) for the water–bubble interface. The inverse transfer function R(I) is obtained by integrating over the photodetector solid angle centered at some constant θ. Using R(I) as a look-up table, the radius vs time [R(t)] response is calculated from the measured intensity vs time [Iexp(R,t)].

© 1990 Optical Society of America

Original Manuscript: August 21, 1989
Published: October 1, 1990

R. Glynn Holt and Lawrence A. Crum, "Mie scattering used to determine spherical bubble oscillations," Appl. Opt. 29, 4182-4191 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Euler, “Classe de Philosophie experimentale,” Histoire de l’ Academie Royale des Sciences et Belles Lettres, Mem. R. 10, 1754 (Berlin, 1756). pp 227–295; the remarks on the rupture of the liquid from the walls are made in Chap. 81, pp. 266–267.
  2. Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94 (1917). [CrossRef]
  3. D-Y Hsieh, “Some Analytical Aspects of Bubble Dynamics,” J. Basic Eng. 87D, 991 (1965). [CrossRef]
  4. M. S. Plesset, “The Dynamics of Cavitation Bubbles,” J. Appl. Mech. 16, 277 (1949).
  5. B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics,” Proc. Phys. Soc. London, Sect. B 63, 674 (1950). [CrossRef]
  6. B. E. Noltingk, E. A. Neppiras, “Cavitation Produced by Ultrasonics: Theoretical Conditions for Onset of Cavitation,” Proc. Phys. Soc. London, Sect. B 64, 1032 (1951). [CrossRef]
  7. H. Poritsky, “The Collapse of Growth of a Spherical Bubble or Cavity in a Viscous Liquid,” in Proceedings, First U.S. National Congress on Applied Mechanics (ASME, New York, 1952), p. 813.
  8. R. Hickling, M. S. Plesset, “Collapse and Rebound of a Spherical Bubble in Water,” Phys. Fluids 7, 7 (1964). [CrossRef]
  9. A. Prosperetti, L. A. Crum, K. W. Commander, “Nonlinear Bubble Dynamics,” J. Acoust. Soc. Am. 83, 502 (1988). [CrossRef]
  10. S. A. Thorpe, P. N. Humphries, “Bubbles and Breaking Waves,” Nature (London) 283, 463 (1980). [CrossRef]
  11. A. Prosperetti, “Bubble Dynamics in Oceanic Ambient Noise” in Sea Surface Sound, B. R. Kerman, ed., 151 (Kluwer, Dordrecht, 1988). [CrossRef]
  12. L. A. Crum, S. Daniels, M. Dyson, G. R. ter Haar, A. J. Walton, “Acoustic Cavitation and Medical Ultrasound,” Proc. Inst. Acoust. (U.K.) 8, 137 (1986).
  13. R. E. Apfel, “Acoustic Cavitation: A Possible Consequence of Biomedical Uses of Ultrasound,” Br. J. Cancer Suppl. V 45, 140 (1982).
  14. G. Mie, “Beiträge für optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 25, 377 (1908).
  15. M. S. Plesset, “On the Stability of Fluid Flows with Spherical Symmetry,” J. Appl. Phys. 25, 96 (1954). [CrossRef]
  16. A. Prosperetti, “Viscous Effects on Perturbed Spherical Flows,” Q. Appl. Math. 35, 339 (1977).
  17. A. Prosperetti, G. Seminara, “Linear Stability of a Growing or Collapsing Bubble in a Slightly Viscous Liquid,” Phys. Fluids 21, 1465 (1978). [CrossRef]
  18. H. G. Flynn, “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, W. P. Mason, Ed. (Academic, New York, 1964).
  19. R. E. Apfel, “Acoustic Cavitation Prediction,” J. Acoust. Soc. Am. 69, 1624 (1981). [CrossRef]
  20. W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59, 283 (1976). [CrossRef]
  21. Y. A. Akulichev, “Pulsations of Cavitation Bubbles in the Field of an Ultrasonic Wave,” Sov. Phys. Acoust. 13, 149 (1967).
  22. J. B. Keller, I. Kolodner, “Damping at Underwater Explosion Bubble Oscillations,” J. Appl. Phys. 27, 1152 (1956). [CrossRef]
  23. A. Prosperetti, “Nonlinear Oscillations of Gas Bubbles in Liquids: Steady-State Solutions,” J. Acoust. Soc. Am. 56, 878 (1974). [CrossRef]
  24. J. B. Keller, M. Miksis, “Bubble Oscillations of Large Amplitude,” J. Acoust. Soc. Am. 68, 628 (1980). [CrossRef]
  25. A. Prosperetii, “Thermal Effects and Damping Mechanisms in the Forced Radial Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 61, 17 (1977). [CrossRef]
  26. L. A. Crum, “The Polytropic Exponent of Gas Contained Within Air Bubbles Pulsating in a Liquid,” J. Acoust. Soc. Am. 73, 116 (1983). [CrossRef]
  27. L. A. Crum, A. Prosperetii, “Nonnlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results,” J. Acoust. Soc. Am. 73, 121 (1983). [CrossRef]
  28. H. G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57, 1379 (1975). [CrossRef]
  29. R. Hickling, “Effects of Thermal Conduction in Sonoluminescence,” J. Acoust. Soc. Am. 35, 967 (1963). [CrossRef]
  30. J. M. T. Thompson, H. B. Stewart, Nonlinear Dynamics and Chaos (Wiley, New York, 1986).
  31. W. Lauterborn, “Cavitation Bubble Dynamics—New Tools for an Intricate Problem,” Appl. Sci. Res. 38, 165 (1982). [CrossRef]
  32. W. Lauterborn, E. Cramer, “Subharmonic Route to Chaos Observed in Acoustics,” Phys. Rev. Lett. 47, 1445 (1984). [CrossRef]
  33. W. Lauterborn, E. Suchla, “Bifurcation Superstructure in a Model of Acoustic Turbulence,” Phys. Rev. Lett. 53, 2304 (1984). [CrossRef]
  34. D. F. Gaitan, NCPA University, M5 38677; private communication.
  35. V. Kamath, A. Prosperetti, “Numerical Integration Methods in Gas-Bubble Dynamics,” J. Acoust. Soc. Am. 85, 1538 (1989). [CrossRef]
  36. L. A. Crum, J. B. Fowlkes, “Acoustic Cavitation Generated by Microsecond Pulses of Ultrasound,” Nature (London) 319, 52 (1986). [CrossRef]
  37. A. Eller, H. G. Flynn, “Rectified Diffusion During Nonlinear Pulsations of Cavitation Bubbles,” J. Acoust. Soc. Am. 37, 493 (1965). [CrossRef]
  38. C. C. Church, “Prediction of Rectified Diffusion During Nonlinear Bubble Pulsations at Biomedical Frequencies,” J. Acoust. Soc. Am. 83, 2210 (1988). [CrossRef] [PubMed]
  39. W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).
  40. W. Lauterborn, K. J. Ebeling, “High Speed Holography of Laser-Induced Breakdown in Liquids,” Appl. Phys. Lett. 31, 663 (1977). [CrossRef]
  41. G. Haussmann, W. Lauterborn, “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3–D Image Processing of Hologram Reconstructions,” Appl. Opt. 19, 3529 (1980). [CrossRef] [PubMed]
  42. W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984). [CrossRef]
  43. W. Hentschel, W. Lauterborn, “High Speed Holographic Movie Camera,” Opt. Eng. 24, 687 (1985).
  44. W. Hentschel, H. Zarschizky, W. Lauterborn, “Recording and Automatical Analysis of Pulsed Off-Axis Holograms for Determination of Cavitation Nuclei Size Spectra,” Opt. Commun. 53, 69 (1985). [CrossRef]
  45. W. Lauterborn, A. Koch, “Holographic Observation of Period Doubled and Chaotic Bubble Oscillations in Acoustic Cavitation,” Phys. Rev. A 35, 1974 (1987). [CrossRef] [PubMed]
  46. A. Vogel, W. Lauterborn, “Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics,” Appl. Opt. 27, 1869 (1988). [CrossRef] [PubMed]
  47. W. Lauterborn, J. Holzfuss, A. Koch, “Recent Advances in Cavitation Research at Göttingen University,” in Proceedings, 1986 International Symposium on Cavitation, H. Murai, Ed. (Sendai, Japan, 1986).
  48. G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Appl. Opt. 24, 3214 (1985). [CrossRef] [PubMed]
  49. P. L. Marston, “Critical Angle Scattering by a Bubble: Physical-Optics Approximation and Observations,” J. Opt. Soc. Am. 69, 1205 (1979). [CrossRef]
  50. D. S. Langley, P. L. Marston, “Critical-Angle Scattering of Laser Light from Bubbles in Water: Measurements, Models, and Application to Sizing of Bubbles,” Appl. Opt. 23, 1044 (1984). [CrossRef] [PubMed]
  51. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  52. G. M. Hansen, “Mie Scattering as a Technique for the Sizing of Air Bubbles,” Ph.D. Dissertation, U. Mississippi, Oxford (1983).
  53. W. J. Wiscombe, “Improved Mie Scattering Algorithms,” Appl. Opt. 19, 1505 (1980). [CrossRef] [PubMed]
  54. D. L. Kingsbury, P. L. Marston, “Mie Scattering Near the Critical Angle of Bubbles in Water,” J. Opt. Soc. Am. 71, 358 (1981). [CrossRef]
  55. P. L. Marston suggested that the detector be placed at or near the critical angle for scattering by an air bubble in water (82.9°). In P. L. Marston, D. L. Kingsbury, “Scattering by a Bubble in Water Near the Critical Angle: Interference Effects,” J. Opt. Soc. Am. 71, 192–196 (1981), it is explained that it is necessary to be at or near the critical angle so that contributions from rays transmitted through the bubble adjacent to the point of specular reflection do not affect the nearly R2 dependence. [CrossRef]
  56. R. G. Holt, “Experimental Observation of the Nonlinear Response of Single Bubbles to an Applied Acoustic Field,” Ph.D. Dissertation, U. Mississippi, Oxford (1988).
  57. M. Strasberg, “Onset of Ultrasonic Cavitation in Tap Water,” J. Acoust. Soc. Am. 31, 163 (1959). [CrossRef]
  58. R. G. Holt, “Nonlinear Dynamics of Single Cavitation Bubbles,” in Proceedings, Thirteenth International Congress on Acoustics, Vol. 1, p. 131 (Dragan Srnic Press, Sabac, Yugoslavia, 1989); Belgrade, Yugoslavia.
  59. H. W. Wyld, Mathematical Methods for Physics (Addison-Wesley, Reading, MA, 1976).
  60. S. D. Horsburgh, NCPA, University, M5 38677; proprietary unpublished software package.
  61. J. H. Moore, C. C. Davis, M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).
  62. L. A. Crum, “Measurements of the Growth of Air Bubbles by Rectified Diffusion,” J. Acoust. Soc. Am. 68, 203 (1980). [CrossRef]
  63. A. I. Eller, “Damping Constants of Pulsating Bubbles,” J. Acoust. Soc. Am. 47, 1469 (1970). [CrossRef]
  64. L. A. Crum, A. Prosperetti, “Erratum and Comments on ‘Nonlinear Oscillations of Gas Bubbles in Liquids: an Interpretation of Some Experimental Results’, J. Acoust. Soc. Am. 75, 1910 (1984). [CrossRef]
  65. The essential experimental technique used here, i.e., correlating fluctuations of scattered light intensity from a levitated fluid spheroid to monitor the mechanical oscillations of that object, appears to have been anticipated by an earlier experiment performed by Marston [P. L. Marston, “Rainbow Phenomena and the Detection of Nonsphericity in Drops,” Appl. Opt. 19, 680–685 (1980)] in the investigation of forced shape oscillations of liquid drops. The author was unaware of these results at the time the present experiments were performed. [CrossRef] [PubMed]
  66. This is an acceptable criterion primarily because of the large angle subtended by the detector. If fine structure details had been important, it would have been necessary to fulfill a far more stringent criterion analogous to the far field scattering condition discussed in Refs. 49, 54, and 55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited