OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 30 — Oct. 20, 1990
  • pp: 4441–4446

Ronchi ruling characterization of axially symmetric laser beams

Robert M. O’Connell and Cheng-Hao Chen  »View Author Affiliations


Applied Optics, Vol. 29, Issue 30, pp. 4441-4446 (1990)
http://dx.doi.org/10.1364/AO.29.004441


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of the Ronchi ruling beam characterization method to axially symmetric optical beams is analyzed. Specific results are derived for the Airy and focused annulus diffraction patterns. Plots of the ratio of minimum to maximum transmitted optical power vs the first null radius of the beam functions show that for the Airy pattern and other focused annuli with obscuration ratios smaller than ~0.30, the method should be as useful as with Gaussian beams.

© 1990 Optical Society of America

History
Original Manuscript: June 8, 1989
Published: October 20, 1990

Citation
Robert M. O’Connell and Cheng-Hao Chen, "Ronchi ruling characterization of axially symmetric laser beams," Appl. Opt. 29, 4441-4446 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-30-4441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. Dickson, “Ronchi Ruling Method for Measuring Gaussian Beam Diameter,” Opt. Eng. 18, 70–75 (1979).
  2. E. C. Broockman, L. D. Dickson, R. S. Fortenberry, “Generalization of the Ronchi Ruling Method for Measuring Gaussian Beam Diameter,” Opt. Eng. 22, 643–647 (1983). [CrossRef]
  3. M. A. Karim, “Measurement of Gaussian Beam Diameter Using Ronchi Rulings,” Electron. lett. 21, 427–429 (1985). [CrossRef]
  4. M. A. Karim et al., “Gaussian Laser-Beam-Diameter Measurement Using Sinusoidal and Triangular Rulings,” Opt. Lett. 12, 93–95 (1987). [CrossRef] [PubMed]
  5. D. K. Cohen, B. Little, F. S. Luecke, “Techniques for Measuring 1-μm Diam Gaussian Beams,” Appl. Opt. 23, 637–640 (1984). [CrossRef] [PubMed]
  6. R. Csomor, “Techniques for Measuring 1-μm Diam Gaussian Beams: Comment,” Appl. Opt. 24, 2295–2298 (1985). [CrossRef] [PubMed]
  7. J. Ebert, E. Kiesel, “Measurement of Laser-Induced Damage with an Unstable Resonator-Type Laser,” Appl. Opt. 23, 3759–3761 (1984). [CrossRef] [PubMed]
  8. R. M. O’Connell, R. A. Vogel, “Abel Inversion of Knife-Edge Data from Radially Symmetric Pulsed Laser Beams,” Appl. Opt. 26, 2528–2532 (1987). [CrossRef]
  9. W. F. Krupke, W. R. Sooy, “Properties of an Unstable Confocal Resonator CO2 Laser System,” IEEE J. Quantum Electron. QE-5, 575–586 (1969). [CrossRef]
  10. J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, NJ, 1981), p. 106.
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 395–418.
  12. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge, U.P.New York, 1944), p. 405.
  13. R. G. Stanton, Numerical Methods for Science and Engineering (Prentice-Hall, Englewood Cliffs, NJ, 1961), p. 116.
  14. Samuel M. Selby, editor, Standard Mathematical Tables (CRC Press, Cleveland, 1965), p. 350.
  15. W. T. Welford, “Use of Annular Apertures to Increase Focal Depth,” J. Opt. Soc. Am. 50, 749–753 (1960). [CrossRef]
  16. B. L. Mehta, “Total Illumination in an Aberration Free Annular Aperture,” Appl. Opt. 13, 736–737 (1974). [CrossRef] [PubMed]
  17. H. F. A. Tschunko, “Imaging Performance of Annular Apertures,” Appl. Opt. 13, 1820–1823 (1974). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited