Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extended asymptotic theory of unstable resonator modes

Not Accessible

Your library or personal account may give you access

Abstract

The modes in an unstable resonator can be computed within the limit of a large Fresnel number using the asymptotic expansion of the diffraction integral, as shown by Horwitz, Butts, and Avizonis. The expansion is not valid for the points of interest around or beyond the shadow boundary of the output light. We use a better numerical representation, which extends the regions of use. The comparison of several cases with earlier work shows that the asymptotic theory can be successfully applied for all parameters without restrictions.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Asymptotic theory of unstable resonator modes*

Paul Horwitz
J. Opt. Soc. Am. 63(12) 1528-1543 (1973)

Asymptotic analysis of unstable laser resonators with circular mirrors

R. R. Butts and P. V. Avizonis
J. Opt. Soc. Am. 68(8) 1072-1078 (1978)

Theory of modes in a loaded strip confocal unstable resonator

Gerald T. Moore and Robert J. McCarthy
J. Opt. Soc. Am. 67(2) 228-241 (1977)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.