OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 30 — Oct. 20, 1990
  • pp: 4489–4493

Frequency locking of laser diode using metallic vapor optogalvanic spectrum: UI

Eric David and Jean-Marie Gagne  »View Author Affiliations

Applied Optics, Vol. 29, Issue 30, pp. 4489-4493 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency of a AlGaAs diode laser has been locked to the 8118 - cm - 1 ( f 3 d 2 s M 5 7 0 ) - 20 , 218 - cm - 1 transition of UI at 826.20570 nm using the optogalvanic effect. A hollow cathode vapor generator has been utilized to produce a density of 1012 atoms/cm3 of uranium in vapor phase. The absolute frequency stability for a 10-min run was estimated to be better than 500 kHz P–P at an integration time of 1 s. This preliminary result shows that the rich optogalvanic spectrum of uranium can be efficiently used for the frequency-locking of semiconductor lasers.

© 1990 Optical Society of America

Original Manuscript: February 23, 1990
Published: October 20, 1990

Eric David and Jean-Marie Gagne, "Frequency locking of laser diode using metallic vapor optogalvanic spectrum: UI," Appl. Opt. 29, 4489-4493 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), p. 6.
  2. T. Kimura, “Coherent Optical Fiber Transmission,” IEEE/OSA J. Lightwave Technol. LT-5, 414–428 (1987). [CrossRef]
  3. J. R. Brandenberger, “Hyperfine Splittings in 4p55p Configuration of 83Kr Using Saturated Absorption Laser Spectroscopy,” Phys. Rev. A 39, 64–68 (1989). [CrossRef] [PubMed]
  4. R. T. Ku, J. T. Verdeyen, B. E. Cherrington, L. Goldstein, “Plasma and Gaseous Diagnostics with a Tuned GaAs Laser Diode,” J. Appl. Phys. 43, 4579–4585 (1972). [CrossRef]
  5. M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5 μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983). [CrossRef]
  6. B. Villeneuve, N. Cyr, M. Têtu, “Use of Laser Diodes Locked to Atomic Transitions in Multiwavelength Coherent Communications,” Electron. Lett. 24, 736–737 (1988). [CrossRef]
  7. V. Jayaraman, E. S. Kintzer, J. G. Garcia, A. D. Pillsbury, “Design and Performance of an On-Satellite Laser Diagnostic System for a Free Space Optical Heterodyne Frequency-Shift-Keyed Communication System,” Proc. Soc. Photo-Opt. Instrum. Eng. 996, 84–91 (1988).
  8. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132–134 (1986). [CrossRef] [PubMed]
  9. M. Hashimoto, M. Ohtsu, “Experiments on a Semiconductor Laser Pumped Rubidium Atomic Clock,” IEEE J. Quantum Electron. QE-23, 446–451 (1987). [CrossRef]
  10. M. Tetu, B. Villeneuve, N. Cyr, P. Tremblay, S. Theriault, M. Breton, “Multiwavelength Sources Using Laser Diodes Frequency-Locked to Atomic Resonances,” IEEE/OSA J. Lightwave Technol. LT-7, 1540–1547 (1989). [CrossRef]
  11. J. Blaise, L. J. Radziemski, “Energy Level of Neutral Atomic Uranium (UI),” J. Opt. Soc. Am. 66, 644–659 (1976). [CrossRef]
  12. J. G. Conway, E. F. Warden, “Isotope Shift of Uranium in the Infrared Region Between 1817 and 5598 cm−1,” J. Opt. Soc. Am. B 1, 788–794 (1984). [CrossRef]
  13. R. Engleman, B. A. Palmer, “Precision Isotope Shifts for the Heavy Elements. I. Neutral Uranium in the Visible and Near Infrared,” J. Opt. Soc. Am. 70, 308–317 (1980). [CrossRef]
  14. A. Giacchetti, J. Blaise, C. H. Corliss, R. Zalubas, “Proposed Secondary Wavelength Standards and Line Classifications in Thorium Spectra Between 0.9 and 3 μm,” J. Res. Natl. Bur. Stand. Sect. A 78, 247–281 (1974).
  15. D. W. Steinhaus et al., “Present Status of the Analysis of First and Second Spectra of Uranium (UI and UII) as Derived from Measurement of Optical Spectra,” Los Alamos Scientific Laboratory, Report LA-4501 (1971).
  16. B. A. Palmer, R. A. Keller, R. Engleman, “An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge,” Los Alamos Scientific Laboratory, Report LA-8251 (1980).
  17. B. A. Palmer, R. Engleman, “Atlas of the Thorium Spectrum,” Los Alamos Scientific Laboratory, Report LA-9615 (1983).
  18. Schuurmans, “On the Spectra of Neodynium and Uranium,” Physica 11, 419–425 (1946). [CrossRef]
  19. C. J. Sansonetti, K.-H. Weber, “Reference Lines for Dye-Laser Wave-Number Calibration in the Optogalvanic Spectra of Uranium and Thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984). [CrossRef]
  20. J. M. Gagne, B. Mongeau, B. Leblanc, J. P. Saint-Dizier, P. Pianarosa, L. Bertrand, “Production de vapeur d’uranium par pulvérisation cathodique dans une cathode creuse: efficacités relatives des gaz Ne, Ar, Kr et concentrations à l’état 5L60,” Appl. Opt. 17, 2507–2510 (1978). [CrossRef] [PubMed]
  21. E. Langlois, J. M. Gagne, “Optogalvanic Detection of the Zeeman Effect in a Hollow-Cathode Discharge,” J. Opt. Soc. Am. B 4, 1222–1226 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited