OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 31 — Nov. 1, 1990
  • pp: 4677–4685

Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

Oswald H. W. Siegmund and Geoffrey A. Gaines  »View Author Affiliations


Applied Optics, Vol. 29, Issue 31, pp. 4677-4685 (1990)
http://dx.doi.org/10.1364/AO.29.004677


View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the quantum detection efficiency (QDE) of rubidium bromide opaque photocathodes over the 44–1560-Å wavelength range. We achieved QDEs of >60% at λ = 68 Å, and >40% at λ ≈ 920 Å, for RbBr photocathode layers applied to the surface of microchannel plates (MCPs). The photoelectric threshold is observed at λ ≈ 1560 Å, and there is a broad (≈100-Å) QDE minimum centered at λ ≈ 775 Å which correlates with 2× the band gap energy for RbBr. The QDE is characterized by four peaks centered at λ ≈ 68 Å, λ ≈ 400 Å, λ ≈ 600 Å, and ≈1050 Å. The QDE peaks at λ ≈ 400 Å, ≈600 Å, and ≈1050 Å correspond with emission of 3, 2, and 1 photoelectrons, respectively. The QDE at the λ ≈ 68-Å peak is associated with a d-f resonant absorption feature of RbBr. QDE contributions of the photocathode material inside the channels, and on the interchannel web, have been determined. Measurements of the angular variation of the QDE from 0° to 35° to the channel axis are also presented. We describe a simple QDE model and show that its predictions are in accord with the QDE measurements. Preliminary assessment of the stability of RbBr indicates that no QDE degradation occurs after limited exposure (20 h) to air at low humidity (<30%). Examination of the photocathode structure with an electron microscope reveals a rough surface with a scale of the order of 0.5 μm.

© 1990 Optical Society of America

History
Original Manuscript: December 15, 1989
Published: November 1, 1990

Citation
Oswald H. W. Siegmund and Geoffrey A. Gaines, "Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes," Appl. Opt. 29, 4677-4685 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-31-4677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Martin, S. Bowyer, “Quantum Efficiency of Opaque CsI Photocathodes with Channel Electron Multiplier Arrays in the Extreme and Far Ultraviolet,” Appl. Opt. 21, 4206–4207 (1982). [CrossRef] [PubMed]
  2. G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, M. Lewis, “The Soft X-Ray Detection Efficiency of Coated Microchannel Plates,” Nucl. Instrum. Methods 224, 272–286 (1984). [CrossRef]
  3. M. P. Kowalski, G. G. Fritz, R. G. Cruddace, A. E. Unzicker, N. Swanson, “Quantum Efficiency of Cesium Iodide Photocathodes at Soft X-Ray and Extreme Ultraviolet Wavelengths,” Appl. Opt. 25, 2440–2446 (1986). [CrossRef] [PubMed]
  4. O. H. W. Siegmund, E. Everman, J. V. Vallerga, S. Labov, J. Bixler, M. Lampton, “High Quantum Efficiency Opaque CsI Photocathodes for the Extreme and Far Ultraviolet,” Proc. Soc. Photo-Opt. Instrum. Eng. 687, 117–124 (1986).
  5. O. H. W. Siegmund, E. Everman, J. V. Vallerga, J. Sokolowski, M. Lampton, “Ultraviolet Quantum Detection Efficiency of Potassium Bromide as an Opaque Photocathode Applied to Microchannel Plates,” Appl. Opt. 26, 3607–3614 (1987). [CrossRef] [PubMed]
  6. G. W. Fraser, J. F. Pearson, J. E. Lees, “Caesium Bromide X-Ray Photocathodes,” Nucl. Instrum. Methods 256, 401–405 (1987). [CrossRef]
  7. O. H. W. Siegmund, E. Everman, J. V. Vallerga, M. Lampton, “Extreme Ultraviolet Quantum Efficiency of Opaque Alkali Halide Photocathodes on Microchannel Plates,” Proc. Soc. Photo-Opt. Instrum. Eng. 868, 18–24 (1987).
  8. O. H. W. Siegmund, E. Everman, J. V. Vallerga, M. Lampton, “Soft X-Ray and Extreme Ultraviolet Quantum Detection Efficiency of Potassium Bromide Photocathode Layers on Microchannel Plates,” Appl. Opt. 27, 1568–1573 (1988). [CrossRef] [PubMed]
  9. O. H. W. Siegmund, E. Everman, J. Hull, J. V. Vallerga, M. Lampton, “Soft X-Ray and Extreme Ultraviolet Quantum Detection Efficiency of Potassium Chloride Photocathode Layers on Microchannel Plates,” Appl. Opt. 27, 4323–4330 (1988). [CrossRef] [PubMed]
  10. G. W. Fraser, “The Characterisation of Soft X-Ray Photocathodes in the Wavelength Band 1–300 Å, (B) Caesium Iodide and Other Insulators of High Photoelectric Yield,” Nucl. Instrum. Methods 206, 265–279 (1983). [CrossRef]
  11. B. L. Henke, J. P. Knauer, K. Premaratne, “The Characterization of X-Ray Photocathodes in the 0.1–10 keV Photon Energy Region,” J. Appl. Phys. 52, 1509–1520 (1981). [CrossRef]
  12. L. B. Lapson, J. G. Timothy, “Use of MgF2 and LiF Photocathodes in the Extreme Ultraviolet,” Appl. Opt. 12, 388–393 (1973). [CrossRef] [PubMed]
  13. L. B. Lapson, J. G. Timothy, “Channel Electron Multipliers: Detection Efficiencies with Opaque MgF2 Photocathodes at XUV Wavelengths,” Appl. Opt. 15, 1218–1221 (1976). [CrossRef] [PubMed]
  14. G. W. Fraser, “The Characterisation of Soft X-Ray Photocathodes in the Wavelength Band 1–300 Å, (A) Lead Glass, Lithium Fluoride and Magnesium Fluoride,” Nucl. Instrum. Methods 206, 251–263 (1983). [CrossRef]
  15. P. Metzger, “On the Quantum Efficiences of Twenty Alkali Halides in the 12–21 eV Region,” J. Phys. Chem. Solids 26, 1879–1887 (1965). [CrossRef]
  16. M. J. Whiteley, J. F. Pearson, G. W. Fraser, M. A. Barstow, “The Stability of CsI Coated Microchannel Plate Array X-Ray Detectors,” Nucl. Instrum. Methods 224, 287–297 (1984). [CrossRef]
  17. K. Premaratne, E. R. Dietz, B. L. Henke, “The Stability of Cesium Iodide X-Ray Photocathodes,” Nucl. Instrum. Methods 207, 465–467 (1983). [CrossRef]
  18. H. Onuki, “Photoelectric Emission from Alkali Halides,” Sci. Light Tokyo 23, 54–71 (1974).
  19. H. Saito, S. Saito, R. Onaka, B. Ikeo, “Extreme Ultraviolet Absorption of Alkali Halides,” J. Phys. Soc. Jpn. 24, 1095–1098 (1968). [CrossRef]
  20. K. Teegarden, G. Baldini, “Optical Absorption Spectra of the Alkali Halides at 10°K,” Phys. Rev. 155, 896–907 (1967). [CrossRef]
  21. H. Saito et al., “Absorption Spectra of KCl and RbCl in the Extreme Ultraviolet Region,” Solid State Commun. 8, 1861–1864 (1970). [CrossRef]
  22. A. P. Lukirskii, T. M. Zimkina, “Fotoionisation Absorption in Ionenkristallen,” Rontgenspektren und chemische bindung, Karl-Marx Univ., Leipzig187–193 (1966).
  23. J. E. Eby, K. J. Teegarden, D. B. Dutton, “Ultraviolet Absorption of Alkali Halides,” Phys. Rev. 116, 1099–1105 (1959). [CrossRef]
  24. M. Cardona, R. Haensel, D. W. Lynch, B. Sonntag, “Optical Properties of the Rubidium and Cesium Halides in the Extreme Ultraviolet,” Phys. Rev. B 2, 1117–1131 (1970). [CrossRef]
  25. O. H. W. Siegmund, R. F. Malina, K. Coburn, D. Werthiemer, “Microchannel Plate EUV Detectors for the Extreme Ultraviolet Explorer,” IEEE Trans. Nucl. Sci. NS-31, 776–779 (1984). [CrossRef]
  26. C. Martin, P. Jelinsky, M. Lampton, R. F. Malina, H. O. Anger, “Wedge and Strip Anodes for Centroid Finding Position-Sensitive Photon and Particle Detectors,” Rev. Sci. Instrum. 52, 1067–1074 (1981). [CrossRef]
  27. B. L. Henke, J. Liesegang, S. D. Smith, “Soft X-Ray Induced Secondary Electron Emission from Semiconductors and Insulators: Models and Measurements,” Phys. Rev. B 19, 3004–3021 (1979). [CrossRef]
  28. B. L. Henke, J. A. Smith, “0.1–10 keV X-Ray Induced Electron Emissions from Solids—Model and Secondary Electron Measurements,” J. Appl. Phys. 48, 1852–1866 (1977). [CrossRef]
  29. B. L. Henke, “Low Energy X-Ray Interactions: Photoionization, Scattering, Specular and Bragg Reflection,” AIP Conf. Proc. 75, 146–155 (1981). [CrossRef]
  30. J. Llacer, E. L. Garwin, “Electron-Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies Between 0.25 and 7.5 eV,” J. Appl. Phys. 40, 2766–2775 (1969). [CrossRef]
  31. J. Llacer, E. L. Garwin, “Electron-Phonon Interaction in Alkali Halides. II. Transmission Secondary Emission from Alkali Halides,” J. Appl. Phys. 40, 2776–2792 (1969). [CrossRef]
  32. K. I. Grais, A. M. Bastawros, “A Study of Secondary Electron Emission in Insulators and Semiconductors,” J. Appl. Phys. 53, 5239–5242 (1972). [CrossRef]
  33. C. J. Peimann, M. Skibowski, “Dielectric Properties of the Rubidium Halide Crystals in the Extreme Ultraviolet up to 30 eV,” Phys. Status Solidi 46, 655–665 (1971). [CrossRef]
  34. G. Baldini, B. Bosacchi, “Optical Properties of Alkali Halide Crystals,” Phys. Rev. 166, 863–870 (1968). [CrossRef]
  35. V. Saile, N. Schwentner, M. Skibowski, W. Steinmann, W. Zierau, “Optical Excitation of the Rb+4p Level in Rubidium Halides at 8K°,” Phys. Lett. A 46, 245–246 (1973). [CrossRef]
  36. G. W. Fraser, “The Electron Detection Efficiency of Microchannel Plates,” Nucl. Instrum. Methods 206, 445–449 (1983). [CrossRef]
  37. C. S. Inouye, W. Pong, “Ultraviolet Photoelectron Spectra of Rubidium Halides,” Phys. Rev. B 15, 2265–2272 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited