OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 32 — Nov. 10, 1990
  • pp: 4784–4789

Shift and projection invariant pattern recognition using logarithmic harmonics

David Mendlovic, Naim Konforti, and Emanuel Marom  »View Author Affiliations

Applied Optics, Vol. 29, Issue 32, pp. 4784-4789 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical correlation schemes based on a matched filter containing a single logarithmic harmonic of an object are described. This correlator can provide shift and projection (tilt) invariant pattern recognition. The logarithmic harmonics, their orthogonality, and their completeness are presented, as well as experimental results using computer simulations and real optical targets. The projection invariance and the discrimination ability of this filter are successfully demonstrated.

© 1990 Optical Society of America

Original Manuscript: June 12, 1989
Published: November 10, 1990

David Mendlovic, Naim Konforti, and Emanuel Marom, "Shift and projection invariant pattern recognition using logarithmic harmonics," Appl. Opt. 29, 4784-4789 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. VanderLugt, “Signal Detection by Complex Spatial Filter,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964). [CrossRef]
  2. D. Casasent, S. F. Xia, A. J. Lee, J. Z. Song, “Real-Time Deformation Invariant Optical Pattern Recognition Using Coordinate Transformations,” Appl. Opt. 26, 938–942 (1987). [CrossRef] [PubMed]
  3. Y. Saito, S. Komatsu, H. Ohzu, “Scale and Rotation Invariant Real Time Optical Correlator Using Computer Generated Hologram,” Opt. Commun. 47, 8–11 (1983). [CrossRef]
  4. D. Mendlovic, N. Konforti, E. Marom, “Scale and Projection Invariant Pattern Recognition,” Appl. Opt. 28, 4982–4986 (1989). [CrossRef] [PubMed]
  5. Y. N. Hsu, H. H. Arsenault, “Optical Pattern Recognition Using Circular Harmonic Expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  6. D. Mendlovic, E. Marom, N. Konforti, “Shift and Scale Invariant Pattern Recognition Using Mellin Radial Harmonics,” Opt. Commun. 67, 172–176 (1988). [CrossRef]
  7. J. Rosen, J. Shamir, “Scale Invariant Pattern Recognition with Logarithmic Radial Harmonic Filters,” Appl. Opt. 28, 240–244 (1989). [CrossRef] [PubMed]
  8. T. Szoplik, H. H. Arsenault, “Rotation-Invariant Optical Data Processing Using the 2-D Nonsymmetric Fourier Transform,” Appl. Opt. 24, 168–172 (1985). [CrossRef] [PubMed]
  9. T. Szoplik, H. H. Arsenault, “Shift and Scale-Invariant Anamorphic Fourier Correlator Using Multiple Circular Harmonic Filters,” Appl. Opt. 24, 3179–3183 (1985). [CrossRef] [PubMed]
  10. G. F. Schils, D. W. Sweeney, “Optical Processor for Recognition of Three-Dimensional Targets Viewed from Any Direction,” J. Opt. Soc. Am. A 5, 1309–1321 (1988). [CrossRef]
  11. D. Casasent, J. H. Song, “Optical Projection Correlation,” Appl. Opt. 27, 4977–4984 (1988). [CrossRef] [PubMed]
  12. IMSL Library, fortran Subroutines for Mathematics and Statistics (IMSL, Houston, TX, 1984).
  13. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer Holograms,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited