OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 32 — Nov. 10, 1990
  • pp: 4819–4825

Toward a fundamental image preprocessor

John L. Johnson  »View Author Affiliations


Applied Optics, Vol. 29, Issue 32, pp. 4819-4825 (1990)
http://dx.doi.org/10.1364/AO.29.004819


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general transformation equation is derived and applied to dynamic and static image differences. It uses translation, rotation, scale, and velocity changes as fundamental object features for image segmentation. A linear minimization algorithm is derived based on a spatial smoothness constraint. The transformation and algorithm constitute an automatic target recognition preprocessor architecture.

© 1990 Optical Society of America

History
Original Manuscript: September 21, 1989
Published: November 10, 1990

Citation
John L. Johnson, "Toward a fundamental image preprocessor," Appl. Opt. 29, 4819-4825 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-32-4819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Crowe, J. C. Kirsch, “Optical Correlator Guidance Technology Demonstration,” Proc. Soc. Photo-Opt. Instrum. Eng.29–35 (1988).
  2. J. G. Duthie, J. Upatnieks, “Compact Real-Time Coherent Optical Correlators,” Opt. Eng. 23, 007–011 (Jan./Feb.1984).
  3. D. A. Gregory, H.-K. Liu, “Large-Memory Real-Time Multichannel Multiplexed Pattern Recognition,” Appl. Opt. 23, 4560–4570 (1984). [CrossRef] [PubMed]
  4. A. Verri, F. Girosi, V. Torre, “Mathematical Properties of the Two-Dimensional Motion Field: from Singular Points to Motion Parameters,” J. Opt. Soc. Am. A 6, 698–712 (1989). [CrossRef]
  5. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA (1950), Chap. 8, Sec. 8-6.
  6. R. B. Leighton, Principles of Modern Physics (McGraw-Hill, New York, 1959), Chap. 1, Sec. 1-11.
  7. D. E. Rumelhart, J. C. McClelland, Parallel Distributed Processing (MIT Press, Cambridge, 1986), Vols. 1 and 2.
  8. B. Widrow, M. E. Hoff, “Adaptive Switching Circuits,” IRE WESCON Conv. Rec. Part 4, 96 (1980).
  9. S. Grossberg, “Nonlinear Neural Networks: Principles, Mechanisms, and Architectures,” Neural Networks 1, No. 1, 17–62 (1988). [CrossRef]
  10. R. Hecht-Nielsen, “Theory of the Backpropagation Neural Network,” INNS/IEEE Proc. 1 JCNN 1, 593–606 (1989).
  11. B. K. P. Horn, Robot Vision (McGraw-Hill, New York, 1986), Chap. 12, p. 284.
  12. B. K. P. Horn, Robot Vision (McGraw-Hill, New York, 1986), Chap. 13, p. 318.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited