OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 33 — Nov. 20, 1990
  • pp: 4860–4872

Laser in situ monitoring of combustion processes

A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum  »View Author Affiliations


Applied Optics, Vol. 29, Issue 33, pp. 4860-4872 (1990)
http://dx.doi.org/10.1364/AO.29.004860


View Full Text Article

Enhanced HTML    Acrobat PDF (1734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several examples of laser in situ monitoring of combustion processes are presented. Using a frequency modulated 13CO2 waveguide laser, in situ concentrations of NH3 down to 1 ppm were measured at temperatures up to 600°C in waste incinerators and power or chemical plants. Following ignition of CH3OH–O2 mixtures by a TEA CO2 laser, gas temperature profiles were measured using rapid scanning tunable diode laser spectroscopy of CO molecules. In laminar CH4–air counterflow diffusion flames at atmospheric pressure absolute concentrations, temperatures, and collisional lifetimes of OH radicals were determined by 2-D and picosecond LIF and absorption spectroscopy. Two-dimensional LIF and Mie scattering were used to observe fuel injection and combustion in a diesel engine.

© 1990 Optical Society of America

History
Original Manuscript: March 19, 1990
Published: November 20, 1990

Citation
A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, "Laser in situ monitoring of combustion processes," Appl. Opt. 29, 4860-4872 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-33-4860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Lyon, “Method for the reduction of the concentration of NO in combustion effluence using ammonia,” U.S. Patent3,900,554 (1975).
  2. M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105. [CrossRef]
  3. F. Allario, R. K. Seals, “Measurements of NH3 Absorption Coefficients with a 13C16O2 Laser,” Appl. Opt. 14, 2229–2233 (1975). [CrossRef] [PubMed]
  4. A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982). [CrossRef]
  5. J. Wolfrum, “Chemische Elementarprozesse bei der Bildung und Beseitigung von Schadstoffen in Verbrennungsvorgängen,” TECFLAM Seminar 1, 7–21 (1985).
  6. F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986). [CrossRef]
  7. H. Wolf, W. J. Riedel, in Power Plants “NH3-Measurements in Power Plants with DeNOx Installations,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 120–126. [CrossRef]
  8. K. Gregorius, H. Schorner, “Stack Gas Control by Diode Laser Spectrometer in Power Plants,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 127–133. [CrossRef]
  9. H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989). [CrossRef]
  10. F. W. Taylor, “Spectral Data for the ν2 Bands of Ammonia with Applications to Radiative Transfer in the Atmosphere of Jupiter,” J. Quant. Spectrosc. Radiat. Transfer 13, 1181–1217(1973). [CrossRef]
  11. L. S. Rothman et al., “AFGL Trace Gas Compilation: 1982 Version,” Appl. Opt. 22, 1616–1627 (1983). [CrossRef] [PubMed]
  12. A. Stein, T. R. Todd, B. N. Perry, “Carbon Dioxide Laser Monitor for NH3 in Flue Gas,” Appl. Opt. 22, 3378–3381 (1983). [CrossRef] [PubMed]
  13. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.
  14. B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989). [CrossRef]
  15. B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986). [CrossRef]
  16. U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989). [CrossRef]
  17. R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978). [CrossRef] [PubMed]
  18. S. M. Schoenung, R. K. Hanson, “Temporally and Spatially Resolved Measurements of Fuel Mole Fraction in a Turbulent CO Diffusion Flame,” in Nineteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1982), pp. 449–458.
  19. B. Rosier, P. Gicquel, D. Henry, A. Coppale, “Carbon Monoxide Concentrations and Temperature Measurements in a Low Pressure CH4–O2–NH3 Flame,” Appl. Opt. 27, 360–364 (1988). [CrossRef] [PubMed]
  20. H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985). [CrossRef]
  21. P. H. Beckwith, C. E. Brown, D. J. Dannagher, D. R. Smith, J. Reid, “High Sensitivity Detection of Transient Infrared Absorption Using Tunable Diode Lasers,” Appl. Opt. 26, 2643–2649 (1987). [CrossRef] [PubMed]
  22. D. T. Cassidy, J. Reid, “High-Sensitivity Detection of Trace Gases Using Sweep Integration and Tunable Diode Lasers,” Appl. Opt. 21, 2527–2530 (1982). [CrossRef] [PubMed]
  23. F. A. Williams, “Turbulent Mixing in Non-Reactive and Reactive Flows,” in “Complex Chemical Reaction Systems,” S. N. B. Murphy, Ed. (Plenum, New York, 1975), p. 189.
  24. K. N. C. Bray, “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,” in Book, Springer Series in Chemical Physics, Vol. 47, J. Warnatz, W. Jager, Eds. (Springer-Verlag, Berlin, 1987), pp. 356–375.
  25. N. Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” in Twenty-First International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1231–1250.
  26. H. Tsuji, “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982). [CrossRef]
  27. H. Tsuji, I. Yamaoka, “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” in Thirteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1971), pp. 723–731. [CrossRef]
  28. G. Dixon-Lewis et al., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” in Twentieth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1984), pp. 1893–1904.
  29. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.
  30. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986). [CrossRef]
  31. P. Andresen, A. Bath, W. Groger, H. W. Lulf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378 (1988). [CrossRef] [PubMed]
  32. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988). [CrossRef]
  33. R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).
  34. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air Using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75–77 (1987). [CrossRef] [PubMed]
  35. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar-Induced Fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef] [PubMed]
  36. G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962). [CrossRef]
  37. A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981): [CrossRef]
  38. F. Behrendt, “Simulation laminarer Gegenstrom-Diffusions-flammen unter Verwendung detaillierter Reaktionsmechanismen,” Dissertation, U. Heidelberg (1989).
  39. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987). [CrossRef]
  40. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.
  41. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989). [CrossRef]
  42. M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990). [CrossRef]
  43. A. O. zur Loye, F. V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine,” SAE Paper 870454 (1988).
  44. T. A. Baritaud, R. M. Green, “A 2-D Flame Visualization Technique Applied to the I.C. Engine,” SAE Paper 860025 (1986).
  45. G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).
  46. F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).
  47. P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).
  48. H. Becker et al., “Investigation of Flame Structure and Burning Behaviour in an IC Engine Simulator by 2D-LIF of OH Radicals,” Appl. Phys. B 50, 473–478 (1990). [CrossRef]
  49. P. Andresen et al., “Fluorescence Imaging Inside an Internal Combustion Engine Using Tunable Excimer Lasers,” Appl. Opt. 29, 2392–2404 (1990). [CrossRef] [PubMed]
  50. P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).
  51. L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985). [CrossRef]
  52. M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).
  53. M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).
  54. M. G. Allen, R. K. Hanson, “Digital Imaging of Species Concentration Fields in Spray Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1755–1762.
  55. M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).
  56. W. Hentschel, “Application of Lasers for in-Cylinder Studies and Flow Visualization” (in German), VDI Ber. 617, 347–376 (1986).
  57. W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited