OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 34 — Dec. 1, 1990
  • pp: 5050–5053

Optical computing and related microoptic devices

Jack L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English  »View Author Affiliations


Applied Optics, Vol. 29, Issue 34, pp. 5050-5053 (1990)
http://dx.doi.org/10.1364/AO.29.005050


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate scaling with the cross-sectional area of energy and speed for optical devices and of optical design, speed, and thermal dissipation for device arrays. Theory and experiments clearly point to lower energy and faster speed for smaller devices and to simpler optical design, smaller propagation time delays, and higher thermal dissipation capability for smaller array sizes. We conclude that the development of high speed digital optical processors will depend on small devices interconnected by microoptic systems.

© 1990 Optical Society of America

History
Original Manuscript: November 20, 1989
Published: December 1, 1990

Citation
Jack L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, "Optical computing and related microoptic devices," Appl. Opt. 29, 5050-5053 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-34-5050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979). [CrossRef]
  2. D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-Power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979). [CrossRef]
  3. J. L. Jewell et al., “3-pJ, 82-MHz Optical Logic Gates in a Room-Temperature GaAs-AlGaAs Multiple-Quantum-Well Etalon,” Appl. Phys. Lett. 46, 918–920 (1985). [CrossRef]
  4. S. L. McCall, A. C. Gossard, J. H. English, J. L. Jewell, J. F. Duffy, “Operation of a GaAs-AlAs Optical Logic Gate Fabricated Completely by Molecular Beam Epitaxy,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper FK3.
  5. A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, L. T. Florez, “Fabrication of Microlasers and Microresonator Optical Switches,” Appl. Phys. Lett.55, to be published (1989). [CrossRef]
  6. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–96 (1987). [CrossRef]
  7. J. L. Jewell et al., “Transverse Modes, Waveguide Dispersion and 30 ps Recovery in Submicron GaAs/AlAs Microresonators,” Appl. Phys. Lett. 55, 22–24 (1989). [CrossRef]
  8. J. L. Jewell, Y. H. Lee, S. L. McCall, J. P. Harbison, L. T. Florez, “High-Finesse (Al,Ga)As Interference Filters Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 53, 640–642 (1988). [CrossRef]
  9. J. L. Jewell et al., “Vertical Cavity Single Quantum Well Laser,” Appl. Phys. Lett. 55, 424–426 (1989). [CrossRef]
  10. J. L. Jewell et al., “Low Threshold Electrically-Pumped Vertical-Cavity Surface-Emitting Microlasers,” Electron. Lett. 25, 1123 (1989). [CrossRef]
  11. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Room-Temperature Continuous-Wave Vertical Cavity Single Quantum Well Microlaser Diodes,” Electron. Lett. 25, 1377 (1989). [CrossRef]
  12. J. L. Jewell, S. L. McCall, “Microoptic Systems: Essential for Optical Computing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper TuB4.
  13. F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAsP/InP Light-Emitting Diodes,” Appl. Phys. Lett.43, 642–644 (1983). [CrossRef]
  14. Z. D. Popovic, R. A. Sprague, G. A. Neville Connell, “Technique for Monolithic Fabrication of Microlens Arrays,” Appl. Opt. 27, 1281–1284 (1988). [CrossRef] [PubMed]
  15. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium Phosphide Microlenses by Mass Transport,” Appl. Phys. Lett. 55, 97–99 (1989). [CrossRef]
  16. T. Shiono, K. Setsune, O. Yamazaki, K. Wasa, “Rectangular-Apertured Micro-Fresnel Lens Arrays Fabricated by Electron-Beam Lithography,” Appl. Opt. 26, 587–591 (1987). [CrossRef] [PubMed]
  17. K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984); K. Iga, Proc. IEEE813, Proceedings of the 14th Congress of the International Commission for Optics, Quebec, Canada, Aug. (1987).
  18. Technical Digest, Second Microoptics Conference/Eighth Topical Meeting on Gradient-Index Optical Imaging Systems (The Japan Society of Applied Physics, Tokyo, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited