OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 34 — Dec. 1, 1990
  • pp: 5064–5068

Beam propagation method analysis of optical waveguide lenses

Akira Ishikawa, Masayuki Izutsu, and Tadasi Sueta  »View Author Affiliations


Applied Optics, Vol. 29, Issue 34, pp. 5064-5068 (1990)
http://dx.doi.org/10.1364/AO.29.005064


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focusing characteristics of optical waveguide lenses are analyzed by the beam propagation method (BPM) instead of the ray tracing method. By use of the BPM, we can observe field distributions of a converging or diverging light beam after it passes through a waveguide lens. Variations of the spot width and magnitude of diffraction can immediately be evaluated with this calculation. The BPM calculations are used for a mode-index, Luneburg, and geodesic lenses. For the application of the method to the geodesic lens, the surface deformation is converted into an equivalent index.

© 1990 Optical Society of America

History
Original Manuscript: November 15, 1989
Published: December 1, 1990

Citation
Akira Ishikawa, Masayuki Izutsu, and Tadasi Sueta, "Beam propagation method analysis of optical waveguide lenses," Appl. Opt. 29, 5064-5068 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-34-5064


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Tsai, “Guided-Wave Acoustooptic Bragg Modulators for Wide Band Integrated Optic Communications and Signal Processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979). [CrossRef]
  2. M. K. Barnoski, B. Chen, T. R. Joseph, J. Y. Lee, O. G. Ramer, “Integrated-Optic Spectrum Analyzer,” IEEE Trans. Circuits Syst. CAS-26, 1113–1124 (1979). [CrossRef]
  3. C. M. Verber, R. P. Kenan, J. R. Busch, “Correlator Based on an Integrated Optical Spatial Light Modulator,” Appl. Opt. 20, 1626–1629 (1981). [CrossRef] [PubMed]
  4. D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Exchanged Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264–2271 (1986). [CrossRef] [PubMed]
  5. T. Suhara, S. Fujiwara, H. Nishihara, “Proton-Exchanged Fresnel Lenses in Ti:LiNbO3 Waveguides,” Appl. Opt. 25, 3379–3383 (1986). [CrossRef] [PubMed]
  6. S. A. Reid, M. Varasi, S. Reynolds, “Double Dilute Melt Proton Exchange Fresnel Lenses for LiNbO3 Optical Waveguides,” J. Opt. Commun. 10, 67–73 (1989).
  7. G. C. Righini, G. Molesini, “Design of Optical-Waveguide Homogeneous Refracting Lenses,” Appl. Opt. 27, 4193–4199 (1988). [CrossRef] [PubMed]
  8. W. H. Southwell, “Planar Optical Waveguide Lens Design,” Appl. Opt. 21, 1985–1988 (1982). [CrossRef] [PubMed]
  9. J. Van Roey, J. van der Donk, P. E. Lagasse, “Beam-Propagation Method: Analysis and Assessment,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]
  10. G. P. Bava, P. Rosina, I. Montrosset, “Numerical Analysis of Planar Fresnel Lenses,” J. Mod. Opt. 35, 863–869 (1988). [CrossRef]
  11. A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium Indiffused Proton Exchanged Optical Waveguides in Z-Cut LiNbO3,” Opt. Commun. 61, 100–104 (1987). [CrossRef]
  12. W. H. Southwell, “Index Profiles for Generalized Luneburg Lenses and Their Use in Planar Optical Waveguides,” J. Opt. Soc. Am. 67, 1010–1014 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited