OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 35 — Dec. 10, 1990
  • pp: 5220–5223

Silicon VLSI/ferroelectric liquid crystal technology for micropower optoelectronic computing devices

Timothy J. Drabik and Mark A. Handschy  »View Author Affiliations

Applied Optics, Vol. 29, Issue 35, pp. 5220-5223 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (918 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optoelectronic computing devices with high circuit complexity and a favorable speed-power product can be realized by fabricating a liquid crystal light modulating layer atop a conventional silicon die.

© 1990 Optical Society of America

Original Manuscript: June 26, 1990
Published: December 10, 1990

Timothy J. Drabik and Mark A. Handschy, "Silicon VLSI/ferroelectric liquid crystal technology for micropower optoelectronic computing devices," Appl. Opt. 29, 5220-5223 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Wada, “Optoelectronic Integration Based on GaAs Material,” Opt. Quantum Electron. 20, 441–474 (1988). [CrossRef]
  2. S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352. [CrossRef]
  3. R. Reedy, Ph.D. Thesis, U. California, San Diego (1983).
  4. M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987). [CrossRef]
  5. J. H. Wang et al., “NMOS Transistors Fabricated by Simultaneous Laser-Assisted Crystallization and Diffusion of Silicon on Electro-Optic PLZT,” in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing (Materials Research Society, Pittsburgh, 1988), pp. 675–680.
  6. H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983). [CrossRef]
  7. G. H. Haertling, “PLZT Electrooptic Materials and Applications—a Review,” Ferroelectrics 75, 25–55 (1987). [CrossRef]
  8. H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.
  9. J. P. Salerno et al., “Epitaxial Growth of GaAs on 4-inch Diameter Silicon Substrates by OMCVD,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 119–124.
  10. H. Shichijo et al., “Prospects for GaAs-on-Si Circuits,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 201–212.
  11. R. W. Kaliski et al., “Influence of Annealing and Substrate Orientation on Metalorganic Chemical Vapor Deposition GaAs on Silicon Heteroepitaxy,” J. Appl. Phys. 64, 1196–1200 (1988). [CrossRef]
  12. D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707. [CrossRef]
  13. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric Liquid Crystal Silicon Integrated Circuit Spatial Light Modulator,” Opt. Lett. 15, 291–293 (1990). [CrossRef] [PubMed]
  14. MOS Implementation System (MOSIS), USC Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA 90292-6695.
  15. T. J. Drabik, “Optically Interconnected Parallel Processor Arrays,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta (1990), pp. 116–120.
  16. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 810.
  17. D. W. Bouldin, “VLSI Designer’s Interface,” IEEE Circuits Devices Mag. 6, No. 3, 6 (1990).
  18. K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).
  19. G. Andersson et al., “Submicrosecond Electro-Optic Switching in the Liquid-Crystal Smectic A Phase: The Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 640–642 (1987). [CrossRef]
  20. L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988). [CrossRef]
  21. J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989). [CrossRef]
  22. R. C. Eden, B. M. Welch, “GaAs Digital Integrated Circuits for Ultra High Speed LSI/VLSI,” in Very Large Scale Integration (VLSI) Fundamentals and Applications, D. F. Barbe, Ed. (Springer-Verlag, Berlin, 1982), pp. 128–177. [CrossRef]
  23. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989). [CrossRef]
  24. M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989). [CrossRef]
  25. Reference 23, Chap. 15.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited