OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 35 — Dec. 10, 1990
  • pp: 5268–5281

Multistability, chains, and cycles in optical multiwave mixing processes

Marcus S. Cohen and William H. Julian  »View Author Affiliations

Applied Optics, Vol. 29, Issue 35, pp. 5268-5281 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1726 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We exhibit the information processing capabilities of the first few terms that arise in the amplitude expansion for resonant scattering in a medium with a delay nonlinearity (generalized volume hologram). We begin by showing how the physics of intensity dependent charge transport near a two-photon resonance gives both delayed quadratic and quartic nonlinearities. After reviewing the utility for matrix associative memories exhibited by the delayed quadratic nonlinearity (the ordinary Gabor hologram), we examine the role of the quartic nonlinearity, which is a fourth rank tensor. The symmetries of this tensor determine the information processing capabilities (via multilinear correlations) of the medium in an optical computing paradigm. We find multiple basins of stability, Jordan strings, and cycles as possible dynamic behaviors for the medium. We indicate how each corresponds to an information processing task: multiple basins to multiassociative memory, Jordan strings and cycles to chain and sequence memory and to group-invariant pattern recognition. We briefly indicate how branching processes may be implemented by the fourth rank mode-coupling tensor.

© 1990 Optical Society of America

Original Manuscript: April 21, 1989
Published: December 10, 1990

Marcus S. Cohen and William H. Julian, "Multistability, chains, and cycles in optical multiwave mixing processes," Appl. Opt. 29, 5268-5281 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “Associative Holographic Memory,” IBM J. Res. Dev. 13, 156–159 (1969). [CrossRef]
  2. H. C. Longuet-Higgins, “Holographic Model of Temporal Recall,” Nature London 217, 104 (1968). [CrossRef]
  3. W. T. Cathey, Optical Information Processing and Holography (Wiley, New York, 1974).
  4. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetski, “Holographic Storage in Electro-Optic Crystals,” Ferroelectrics 22, 949–961 (1979). [CrossRef]
  5. A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978). [CrossRef]
  6. D. M. Pepper, “Nonlinear Optical Phase Conjugation,” Opt. Eng. 21, 156–183 (1982).
  7. K. M. Johnson, M. Armstrong, L. Hesselink, J. W. Goodman, “The Multiple Multiple-Exposure Hologram,” Appl. Opt. 24, 4467–4472 (1985). [CrossRef] [PubMed]
  8. M. S. Cohen, “Design of a New Medium For Volume Holographic Information Processing,” Appl. Opt. 25, 2288–2294 (1986). [CrossRef] [PubMed]
  9. J. J. Hopfield, “Neural Networks and Physical Systems With Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982). [CrossRef] [PubMed]
  10. J. A. Anderson, “Cognitive and Psychological Computation With Neural Models,” IEEE Trans. Syst. Man Cybern. SMC-13, 799–815 (1983). [CrossRef]
  11. T. Kohonen, Self Organization and Associative Memory (Springer-Verlag, New York, 1984).
  12. D. Z. Anderson, D. M. Lininger, “Dynamic Optical Interconnects: Volume Holograms As Optical Two-Port Operators,” Appl. Opt. 26, 5031–5038 (1987). [CrossRef] [PubMed]
  13. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative Holographic Memory With Feedback Using Phase-Conjugate Mirrors,” Opt. Lett. 11, 118–120 (1986). [CrossRef] [PubMed]
  14. Y. Owechko, “Optoelectronic Resonator Neural Networks,” Appl. Opt. 26, 5104–5111 (1987). [CrossRef] [PubMed]
  15. A. Yariv, S.-K. Kwong, “Associative Memories Based On Message-Bearing Optical Modes in Phase-Conjugate Resonators,” Opt. Lett. 11, 186–188 (1986). [CrossRef] [PubMed]
  16. K. Wagner, D. Psaltis, “Multilayer Optical Learning Networks,” Appl. Opt. 26, 5061–5076 (1987). [CrossRef] [PubMed]
  17. H. H. Chen, Y. C. Lee, G. Z. Sun, H. Y. Lee, T. Maxwell, C. L. Giles, “High-Order Correlation Model for Associative Memory,” AIP Conf. Proc. 151, 86–99 (1986). [CrossRef]
  18. C. L. Giles, T. Maxwell, “Learning, Invariance, and Generalization in High-Order Neural Networks,” Appl. Opt. 26, 4972–4978 (1987). [CrossRef] [PubMed]
  19. D. Psaltis, C. H. Park, J. Hong, “Higher Order Associative Memories and Their Optical Implementation,” Neural Networks 1, 149–163 (1988). [CrossRef]
  20. Y. Owechko, G. J. Dunning, E. Marom, B. H. Soffer, “Holographic Associative Memory With Nonlinearities in the Correlation Domain,” Appl. Opt. 26, 1900–1910 (1987). [CrossRef] [PubMed]
  21. S. A. Akhmanov, R. V. Khokhlov, Problems of Nonlinear Optics (Gordon & Breach, New York, 1972), p. 5.
  22. A. C. Newell, J. A. Whitehead, “Finite Bandwidth, Finite Amplitude Convection,” J. Fluid Mech. 38, 279–303 (1969). [CrossRef]
  23. A. C. Newell, “Bifurcation and Nonlinear Focusing,” in Pattern Formation and Pattern Recognition (Springer-Verlag, New York, 1980), pp. 244–265.
  24. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 618.
  25. P. Refregier, C. Solymar, H. Rajbenbach, H. P. Huignard, “Two-Beam Coupling in Photorefractive Bi12SiO20 Crystals With Moving Grating: Theory and Experiments,” J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  26. D. L. Hecht, “Multifrequency Acoustooptic Diffraction,” IEEE Trans Sonics Ultrason. SU-24, 7–18 (1977). [CrossRef]
  27. A. Borshch, M. Brodin, V. Volkov, N. Kukhtarev, V. Starkov, “Optical Hysteresis and Bistability in Phase Conjugation By Degenerate Six-Photon Mixing,” J. Opt. Soc. Am. A 1, 40–44 (1984). [CrossRef]
  28. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  29. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical Characteristics of the Photorefractive Incoherent to Coherent Optical Converter,” Opt. Eng. 24, 124–131 (1985).
  30. V. Guillemin, A. Pollock, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974).
  31. S.N. Chow, J. Hale, Methods of Bifurcation Theory (Springer-Verlag, New York, 1982). [CrossRef]
  32. M. S. Cohen, “Multiple Correlations in a Holographic Resonator,” Proc. Soc. Photo-Opt. Instrum. Eng. 882, 122–131 (1988).
  33. F. John, Partial Differential Equations (Springer-Verlag, New York, 1982), p. 48.
  34. M. S. Cohen, “Multistability and Associative Memory in a Phase Conjugating Resonator,” J. Opt. Soc. Am. B, in press.
  35. D. Psaltis, J. Hong, S. Venkatesh, “Shift Invariance in Optical Associative Memories,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 189–195 (1986).
  36. H. Sompolinsky, I. Kanter, “Temporal Association in Asymmetric Neutral Networks,” Phys. Rev. Lett. 57, 2861–2864 (1986). [CrossRef] [PubMed]
  37. H. Kogelnik, C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett. 18, 152–154 (1970). [CrossRef]
  38. B. Noble, Applied Linear Algebra (Prentice-Hall, Englewood Cliffs, NJ, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited