OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 36 — Dec. 20, 1990
  • pp: 5372–5379

Pulse compression and traveling wave excitation scheme using a single dispersive element

Sandor Szatmari, Gotz Kuhnle, and Peter Simon  »View Author Affiliations

Applied Optics, Vol. 29, Issue 36, pp. 5372-5379 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single dispersive element is shown to be sufficient for simultaneous pulse compression and tilting of the pulse front, and therefore well-suited for traveling-wave excitation of targets. It is shown that in all the previous arrangements used for traveling wave excitation, spatially dependent group velocity dispersion occurs along the target. A compensated arrangement is proposed that provides pulse compression at the target-plane and exact synchronism between the pump and the generated pulses for various targets.

© 1990 Optical Society of America

Original Manuscript: September 26, 1989
Published: December 20, 1990

Sandor Szatmari, Gotz Kuhnle, and Peter Simon, "Pulse compression and traveling wave excitation scheme using a single dispersive element," Appl. Opt. 29, 5372-5379 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Mack, “Superradiant Traveling-Wave Dye Laser,” Appl. Phys. Lett. 15, 166–168 (1969). [CrossRef]
  2. M. M. Malley, P. M. Rentzepis, “Picosecond Time-Resolved Stimulation Light Emission,” Chem. Phys. Lett. 7, 57–60 (1970). [CrossRef]
  3. M. R. Topp, P. M. Rentzepis, R. P. Jones, “Time-Resolved Picosecond Emission Spectroscopy of Organic Dye Lasers,” Chem. Phys. Lett. 9, 1–5 (1971). [CrossRef]
  4. C. Lin, T. K. Gustafson, A. Dienes, “Superradiant Picosecond Laser Emission from Transversely Pumped Dye Solution,” Opt. Commun. 8, 210–215 (1973). [CrossRef]
  5. A. N. Rubinov, M. C. Richardson, K. Sala, A. J. Alcock, “Generation of Single-Picosecond Dye Laser Pulses Using One- and Two-Photon Traveling-Wave Excitation,” Appl. Phys. Lett. 27, 358–360 (1975). [CrossRef]
  6. G. R. Fleming, A. E. W. Knight, J. M. Morris, R. J. Robbins, G. W. Robinson, “Picosecond Spectroscopic Studies of Spontaneous and Stimulated Emission in Organic Dye Molecules,” Chem. Phys. 23, 61–70 (1977). [CrossRef]
  7. W. Falkenstein, A. Penzkofer, W. Kaiser, “Amplified Spontaneous Emission in Rhodamine Dyes: Generation of Picosecond Light Pulses and Determination of Excited State Absorption and Relaxation,” Opt. Commun. 27, 151–156 (1978). [CrossRef]
  8. A. Penzkofer, W. Falkenstein, “Theoretical Investigation of Amplified Spontaneous Emission with Picosecond Light Pulses in Dye Solution,” Opt. Quantum Electron. 10, 399–423 (1978). [CrossRef]
  9. A. Penzkofer, J. Wiedmann, “Orientation of Transition Dipole Moments of Rhodamine 6G Determined by Excited State Absorption,” Opt. Commun. 35, 81–86 (1980). [CrossRef]
  10. A. N. Rubinov, B. A. Bushuk, A. A. Murav’ov, A. P. Stupak, “Picosecond Spectroscopy of Intermolecular Interactions in Dye Solutions,” Appl. Phys. B 30, 99–104 (1983). [CrossRef]
  11. Zs. Bor, S. Szatmari, A. Muller, “Picosecond Pulse Shortening by Traveling Wave Amplified Spontaneous Emission,” Appl. Phys. B 32, 101–104 (1983). [CrossRef]
  12. H. J. Polland, T. Elsaesser, A. Seilmeier, W. Kaiser, “Picosecond Dye Laser Emission in the Infrared Between 1.4 and 1.8 Am,” Appl. Phys. B 32, 53–57 (1983). [CrossRef]
  13. S. Szatmari, F. P. Schafer, “A Tunable, Highly Monochromatic Picosecond Light Source,” Opt. Commun. 49, 281–284 (1984). [CrossRef]
  14. Zs. Bor, B. Racz, “Group Velocity Dispersion in Prism and Its Application to Pulse Compression and Traveling-Wave Excitation,” Opt. Commun. 54, 165–170 (1985). [CrossRef]
  15. J. Klebniczki, Zs. Bor, G. Szabo, “Theory of Traveling-Wave Excited Amplified Spontaneous Emission,” Appl. Phys. B 46, 151–155 (1987). [CrossRef]
  16. J. Hebling, J. Klebniczki, P. Heszler, Zs. Bor, B. Racz, “Traveling-Wave Amplified Spontaneous Emission Excited in a Prismatic Geometry,” Appl. Phys. B 48, 401–403 (1989). [CrossRef]
  17. T. Elsaesser, H. J. Polland, A. Seilmeier, W. Kaiser. “Narrow-Band Infrared Picosecond Pulses Tunable Between 1.2 and 1.4 μm Generated by a Traveling-Wave Dye Laser,” IEEE J. Quantum Electron. QE-20, 191–194 (1984). [CrossRef]
  18. H. Lobentanzer, T. Elsaesser, “Theoretical and Experimental Analysis of Infrared Dye-Laser Action in a Traveling-Wave Pumping Geometry,” Appl. Phys. B 41, 139–145 (1986). [CrossRef]
  19. J. Hebling, J. Kuhl, “Generation of Femtosecond Pulses by Traveling-Wave Amplified Spontaneous Emission,” Opt. Lett. 14, 278–280 (1989). [CrossRef] [PubMed]
  20. F. P. Schafer, “On Some Properties of Axicons,” Appl. Phys. B 39, 1–8 (1986). [CrossRef]
  21. F. P. Schafer, “Die Erzeugung ultrakurzer Laserimpulse im Ultraviolett und Röntgenbereich,” Phys. Bl. 42, 283–288 (1986).
  22. C. P. J. Barty, D. A. King, G. Y. Yin, K. H. Hahn, J. E. Field, J. F. Young, S. E. Harris, “12.8-eV Laser in Neutral Cesium,” Phys. Rev. Lett. 61, 2201–2204 (1988). [CrossRef] [PubMed]
  23. W. T. Silfvast, O. R. Wood, “Simple Efficient Traveling-Wave Excitation of Short-Wavelength Lasers Using a Conical Pumping Geometry,” Opt. Lett. 14, 18–20 (1989). [CrossRef] [PubMed]
  24. S. Szatmari, F. P. Schafer, E. Muller-Horsche, W. Muckenheim, “Hybrid Dye-Excimer Laser System for the Generation of 80 fs, 900 GW Pulses at 248 nm,” Opt. Commun. 63, 305–309 (1987). [CrossRef]
  25. S. Szatmari, F. P. Schafer, “Simplified Laser System for the Generation of 60 fs Pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988). [CrossRef]
  26. S. Szatmari, G. Kuhnle, J. Jasny, F. P. Schafer, “KrF Laser System with Corrected Pulse Front and Compressed Pulse Duration,” Appl. Phys. B 49, 239–244 (1989). [CrossRef]
  27. O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative Group-Velocity Dispersion Using Refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984). [CrossRef]
  28. E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969). [CrossRef]
  29. S. Szatmari, G. Kuhnle, “Pulse Front and Pulse Duration Distortion in Refractive Optics, and Its Compensation,” Opt. Commun. 69, 60–65 (1988). [CrossRef]
  30. Zs. Bor, “Distortion of Femtosecond Laser Pulses in Lenses,” Opt. Lett. 14, 119–121 (1989); Zs. Bor, “Distortion of Femtosecond Laser Pulses in Lenses and Lens Systems,” J. Mod. Opt. 35, 1907–1918 (1988). [CrossRef] [PubMed]
  31. P. Simon, H. Gerhardt, S. Szatmari, “Simple Method for Temporal Study of Subpicosecond Distributed Feedback Dye Lasers,” Opt. Commun. 71, 305–310 (1989). [CrossRef]
  32. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-Photon Absorption at 248 nm in Ultraviolet Window Materials,” Opt. Lett. 13, 814–916 (1988). [CrossRef] [PubMed]
  33. J. P. Gordon, R. L. Fork, “Optical Resonator with Negative Dispersion,” Opt. Lett. 9, 153–155 (1984). [CrossRef] [PubMed]
  34. R. Fedosejevs, R. Ottmann, R. Sigel, G. Kuhnle, S. Szatmari, F. P. Schafer, “Absorption of Subpicosecond Ultraviolet Laser Pulses in High-Density Plasma,” Appl. Phys. B 50, 79–99 (1990). [CrossRef]
  35. P. Maine, D. Strickland, P. Bado, M. Pesssot, G. Mourou, “Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification,” IEEE J. Quantum Electron. QE-24, 398–403 (1988). [CrossRef]
  36. S. Szatmari, P. Simon, H. Gerhardt, “Generation of 135 fs Pulses of Variable Pulse Front Tilt by Spatially-Evolving Chirped-Pulse Amplification at 248 nm,” Opt. Commun., in press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited