OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 4 — Feb. 1, 1990
  • pp: 451–462

Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review

William B. Grant  »View Author Affiliations

Applied Optics, Vol. 29, Issue 4, pp. 451-462 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8–13 μm) during the past 20 years obtained by a variety of techniques are reviewed for consistency and are compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5–10% level in five of the measurements reported. However, the effect of oxygen broadening has not been fully considered, since most laboratory measurements were made using nitrogen buffering. Oxygen could lead to a small reduction in the adopted value of the water vapor continuum absorption coefficient in air. Also, the temperature dependence does not seem to have been measured well for temperatures <20°C. The rotational and ν2 line absorption coefficients do not appear to have been determined well in this spectral region except at CO2 laser line frequencies, because the agreement between such measurements and the AFGL spectral data tapes is generally not good.

© 1990 Optical Society of America

Original Manuscript: June 6, 1989
Published: February 1, 1990

William B. Grant, "Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review," Appl. Opt. 29, 451-462 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).
  2. F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).
  3. D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987). [CrossRef]
  4. L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988). [CrossRef]
  5. A. E. Strong, “Greater Global Warming Revealed by Satellite-Derived Sea-Surface Temperature Trends,” Nature (London) 338, 642–645 (1989). [CrossRef]
  6. I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989). [CrossRef]
  7. P. Schluessel, “Satellite-Derived Low-Level Atmospheric Water Vapor Content from Synergy of AVHRR with HIRS,” Int. J. Remote Sensing 10, 705–721 (1989). [CrossRef]
  8. A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983). [CrossRef] [PubMed]
  9. C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 355–374.
  10. J. M. Russell et al., “Validation of Water Vapor Results Measured by the Limb Infrared Monitor of the Stratosphere Experiment on Nimbus 7,” J. Geophys. Res. 89, 5115–5124 (1984). [CrossRef]
  11. S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.
  12. D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Proc. Soc. Photo-Instrum. Eng. 277, 28–39 (1981). D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Mass. (1981).
  13. S. H. Suck, A. E. Wetmore, T. S. Chen, J. L. Kassner, “Role of Various Water Clusters in IR Absorption in the 8–14-μm Window Region,” Appl. Opt. 21, 1610–1614 (1982). [CrossRef] [PubMed]
  14. A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).
  15. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701–3710 (1983). [CrossRef] [PubMed]
  16. M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985). [CrossRef] [PubMed]
  17. S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).
  18. J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland. [CrossRef]
  19. M. E. Thomas, “Infrared- and Millimeter-Wavelength Absorption in the Atmospheric Windows by Water Vapor and Nitrogen: Measurement and Models,” Proc. Soc. Photo-Instrum. Eng. 926, 85–91 (1988).
  20. P. Varanasi, “Infrared Absorption by Water Vapor in the Atmospheric Window,” Proc. Soc. Photo-Instrum. Eng. 928, 213–230 (1988); “On the Nature of the Infrared Spectrum of Water Vapor Between 8 and 14 μm,” J. Quant. Spectrosc. Radiat. Transfer 40, 169–175 (1988).
  21. Z. Slanina, “A Theoretical Evaluation of Water Oligomer Population in the Earth’s Atmosphere,” J. Atmos. Chem. 6, 185–190 (1988). [CrossRef]
  22. D. E. Burch, R. L. Alt, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Report AFGL-TR-84-0128 to the Air Force Geophysics Laboratory, Hanscom AFB MA (1984).
  23. R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978). [CrossRef] [PubMed]
  24. J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979). [CrossRef] [PubMed]
  25. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976). [CrossRef] [PubMed]
  26. J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984). [CrossRef] [PubMed]
  27. F. X. Kneizys et al., “Comparison of 8 to 12 Micrometer and 3 to 5 Micrometer CVF Transmissometer Data with lowtran Calculations,” Air Force Geophysics Laboratory Report AFGL-TR-84-0171 (1984).
  28. D. R. Cutten, “Atmospheric IR Transmission Measurements in a Tropical Maritime Environment: Comparison with the lowtran 6 Model,” Tech. Memorandum ERL-0331-TM (Dept. of Defence, Defence Science and Technology Org., Electronics Research Lab., Salisbury, So. Australia, Feb.1985).
  29. D. R. Cutten, “Atmospheric Broadband Transmission Measurements and Predictions in the 8–13-μm Window: Influence of Water Continuum Absorption Errors,” Appl. Opt. 24, 1085–1087 (1985). [CrossRef] [PubMed]
  30. A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).
  31. A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–65 (1988).
  32. D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).
  33. D. E. Burch, D. A. Gryvnak, “Infrared Absorption by CO2 and H2O,” Report AFCRL-TR-78-0154, to the Air Force Cambridge Research Laboratory, Hanscom AFB, MA (1978).
  34. D. E. Burch, “Continuum Absorption by H2O,” Report AFGL-TR-81-0030 to the Air Force Geophysics Laboratory, Hanscom AFB, MA (1982).
  35. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  36. S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).
  37. S. A. Clough, AFGL; private communication (1987).
  38. P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987). [CrossRef]
  39. J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969). [CrossRef] [PubMed]
  40. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974). [CrossRef]
  41. V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986). [CrossRef]
  42. L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986). [CrossRef]
  43. H. G. Hughes, “Evaluation of the lowtran 6 Navy Maritime Aerosol Model Using 8 to 12 μm Sky Radiances,” Opt. Eng. 26, 1155–1160 (1987).
  44. C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985). [CrossRef] [PubMed]
  45. R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986). [CrossRef] [PubMed]
  46. R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987). [CrossRef] [PubMed]
  47. L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972). [CrossRef] [PubMed]
  48. A. C. Tam, “Review of Laser Optoacoustic Spectroscopy, by V. P. Zharov and V. S. Letokov,” IEEE J. Quantum Electron. QE-23, 132 (1987). [CrossRef]
  49. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]
  50. C. P. Rinsland, NASA Langley Research Center; private communication (1989).
  51. R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).
  52. R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983). [CrossRef] [PubMed]
  53. P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987). [CrossRef]
  54. Y. Zhao, R. M. Hardesty, “Technique for Correcting Effects of Long CO2 Laser Pulses in Aerosol-Backscattered Coherent Lidar Returns,” Appl. Opt. 27, 2719–2729 (1988). [CrossRef] [PubMed]
  55. G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).
  56. R. W. Saunders, D. P. Edwards, “Atmospheric Transmittances for the AVHRR Channels,” Appl. Opt. 28, 4154–4160 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited