OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 4 — Feb. 1, 1990
  • pp: 467–476

Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere

A. Papayannis, G. Ancellet, J. Pelon, and G. Mégie  »View Author Affiliations

Applied Optics, Vol. 29, Issue 4, pp. 467-476 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To study the ozone spatial and temporal evolution in the atmosphere, lidar systems have proved to be adequate but have remained complex. We define in this paper the main characteristics of a UV DIAL system for ground based and airborne ozone measurements in the troposphere and the lower stratosphere both for daytime and nighttime operation. A multiwavelength lidar system using either Rayleigh/Mie signals or the Raman nitrogen signal, is discussed as a way to efficiently correct the ozone measurements from the systematic bias due to aerosol and other interference gases (i.e. SO2) in the lower troposphere. Two types of lasers (solid state and excimer) are compared, as both lasers are suitable for long term field operation and airborne use.

© 1990 Optical Society of America

Original Manuscript: April 10, 1989
Published: February 1, 1990

A. Papayannis, G. Ancellet, J. Pelon, and G. Mégie, "Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere," Appl. Opt. 29, 467-476 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Logan, “Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence,” J. Geophys. Res. 90, 10463–10482 (1985). [CrossRef]
  2. W. C. Chameides, “The Photochemical Role of Tropospheric Nitrogen Oxides,” Geophys. Res. Lett. 5, 17–20 (1978). [CrossRef]
  3. J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979). [CrossRef]
  4. J. Fishman, “Ozone in the Troposphere,” in Ozone in the Free Atmosphere166, R. Whitten, S. Prasad, Eds. (Van Nostrand Reinhold, New York1985).
  5. J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982). [CrossRef]
  6. E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987). [CrossRef]
  7. R. M. Schotland, “Error in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  8. G. Mgie, R. T. Menzies, “Complementarity of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species,” Appl. Opt. 19, 1173–1183 (1980). [CrossRef]
  9. K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979). [CrossRef]
  10. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential Absorption Lidar Measurement of Tropospheric Ozone with Excimer–Raman Hybrid Laser,” Opt. Lett. 8, 347–349 (1983). [CrossRef] [PubMed]
  11. H. Komine, “Stimulated Vibrational Raman Scattering in HD,” J. Quant. Electr. 22, 520 (1986). [CrossRef]
  12. U.S. Standard Atmosphere (1976), NOAA, NASA, USAF, US Government Printing Office, Washington, D.C., p. 227.
  13. A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976). [CrossRef]
  14. F. X. Kneizys et al., “Atmospheric Transmittance/radiance: Computer Code Lowtran 6,” AFGL-TR-80-0067, Feb.1980, Air Force Geophysics Laboratory, Bedford, Mass.
  15. J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972). [CrossRef]
  16. T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977). [CrossRef]
  17. R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983). [CrossRef]
  18. M. J. Post, “Atmospheric Purging of El Chichon Debris,” J. Geophys. Res. 91, 5222–5228 (1986). [CrossRef]
  19. E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).
  20. J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977). [CrossRef]
  21. A. M. Bass, R. J. Paur, “Ultraviolet Absorption Cross-Sections of Ozone: Measurements, Results and Error Analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass, 1984), p. 606.
  22. D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774–3779 (1981). [CrossRef] [PubMed]
  23. D. R. Martin, “Kinetics of Sulfur Dioxide Fluorescence,” Report LBL-1199, Lawrence Berkeley Laboratory, Univ. of California, Berkeley, California (1973).
  24. A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.
  25. A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976). [CrossRef]
  26. E. V. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  27. D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988). [CrossRef]
  28. J. Potter, “Two Frequency Lidar Inversion Technique,” Appl. Opt. 26, 1250–1256 (1987). [CrossRef] [PubMed]
  29. J. D. Klett, “Lidar Inversion with Variable Backscatter/Extinction Ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited