OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 6 — Feb. 20, 1990
  • pp: 841–854

Frequency modulation time delay thermal lens effect spectrometry: a new technique of transient photothermal calorimetry

J. F. Power  »View Author Affiliations


Applied Optics, Vol. 29, Issue 6, pp. 841-854 (1990)
http://dx.doi.org/10.1364/AO.29.000841


View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of laser-induced thermal lens effect measurement is demonstrated in which the thermooptic impulse response of a weakly absorbing sample is recovered in the time delay domain through excitation with a fast linear frequency sweep. The autocorrelation function of the excitation sweep approximates to a Dirac delta function to a time resolution limited by the modulation bandwidth of the sweep, thereby permitting the fast recovery of high quality frequency and impulse response information. Impulse response data recovered in the time delay domain showed good agreement with the results predicted from Fresnel diffraction theory, indicating an equivalence to the response recovered in a typical pulsed measurement. The FM time delay technique, however provides enhanced measurement dynamic range and an overall reduced peak excitation power when compared with the pulsed measurement.

© 1990 Optical Society of America

History
Original Manuscript: February 1, 1989
Published: February 20, 1990

Citation
J. F. Power, "Frequency modulation time delay thermal lens effect spectrometry: a new technique of transient photothermal calorimetry," Appl. Opt. 29, 841-854 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-6-841

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited