OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 7 — Mar. 1, 1990
  • pp: 907–917

Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan’s atmosphere

Christopher R. Webster, Stanley P. Sander, Reinhard Beer, Randy D. May, Robert G. Knollenberg, Donald M. Hunten, and John Ballard  »View Author Affiliations


Applied Optics, Vol. 29, Issue 7, pp. 907-917 (1990)
http://dx.doi.org/10.1364/AO.29.000907


View Full Text Article

Enhanced HTML    Acrobat PDF (1433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan’s atmosphere on the NASA/ESA Saturn Orbiter/Titan Probe Cassini Mission. For gas composition measurements, several narrow bandwidth (0.0001 cm−1) tunable lead-salt diode lasers operating near 80 K at selected, mid-IR wavelengths (3–16 μm) are directed over a pathlength defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10−9 should be measurable for several species of interest. A cloud particle size spectrometer using a diode laser source at 0.78 μm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques will be used to determine sizes of haze and cloud particles and their number density as a function of altitude.

© 1990 Optical Society of America

History
Original Manuscript: August 2, 1989
Published: March 1, 1990

Citation
Christopher R. Webster, Stanley P. Sander, Reinhard Beer, Randy D. May, Robert G. Knollenberg, Donald M. Hunten, and John Ballard, "Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan’s atmosphere," Appl. Opt. 29, 907-917 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-7-907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Cassini—Saturn Orbiter and Titan Probe,” ESA/NASA Assessment Study, ESA Ref: SCI(85)1 (Aug.1985).
  2. “Report on the Phase A Study,” ESA/NASA Study, ESA Ref: SCI(88)5 (Oct.1988).
  3. D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).
  4. T. Owen, “Titan,” in “The Planets:” Readings from Scientific AmericanW. H. Freeman, San Francisco, 1983).
  5. Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984). [CrossRef] [PubMed]
  6. C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan,” J. Quant. Spectros. Radiat. Transfer 40, 239–248 (1988). [CrossRef]
  7. D. L. Partin, “Preparation and Applications of Lead Chalcogenide Lasers,” Mater. Res. Soc. Symp. Proc. 90, 47–58 (1987). [CrossRef]
  8. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).
  9. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  10. M. Loewenstein, “Diode Laser Harmonic Spectroscopy Applied to In-Situ Measurements of Atmospheric Trace Molecules,” J. Quant. Spectros. Radiat. Transfer 40, 249–256 (1988). [CrossRef]
  11. R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980). [CrossRef]
  12. R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980). [CrossRef]
  13. C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987). [CrossRef]
  14. C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.
  15. R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989). [CrossRef]
  16. R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectros. 43, 834–839 (1989). [CrossRef]
  17. D. R. Herriott, H. Kogelnick, R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  18. J. Altman, R. Baumgart, C. Weitkamp, “Two-Mirror Multipass Absorption Cell,” Appl. Opt. 20, 995–999 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited