OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 8 — Mar. 10, 1990
  • pp: 1077–1093

Optical interconnections for massively parallel architectures

Aloke Guha, Julian Bristow, Charles Sullivan, and Anis Husain  »View Author Affiliations


Applied Optics, Vol. 29, Issue 8, pp. 1077-1093 (1990)
http://dx.doi.org/10.1364/AO.29.001077


View Full Text Article

Enhanced HTML    Acrobat PDF (2526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a study of board-level interconnection requirements for highly parallel and massively parallel computing. Analytical models of the I/O bandwidth of popular interconnection networks have been developed and show that current electronic technologies are poor in supporting the necessary I/O density and bandwidth. Optical interconnects appear to offer greater potential in meeting these I/O requirements. Several possible optical implementations of interconnecting a network of electronic processors are compared. The use of polymer waveguides appears to offer the best solution compatible with existing multiboard system architectures.

© 1990 Optical Society of America

History
Original Manuscript: June 16, 1989
Published: March 10, 1990

Citation
Aloke Guha, Julian Bristow, Charles Sullivan, and Anis Husain, "Optical interconnections for massively parallel architectures," Appl. Opt. 29, 1077-1093 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-8-1077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
  2. J. F. Palmer, “The NCUBE Family of Parallel Supercomputers,” in Proceedings, IEEE International Conference on Computer Design (1986).
  3. A. Guha, M. W. Derstine, “Design and Analysis of the SPARO Optical Computing Architecture,” submitted to Appl. Opt., in press.
  4. “Million-Transitor Microchip,” IEEE Spectrum22–28 (April1989).
  5. K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984).
  6. C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98. [CrossRef]
  7. D. H. Lawrie, D. A. Padua, “Analysis of Message Switching with Shuffle Exchanges in Multiprocessors,” in Proceedings, Workshop on Interconnection Networks for Parallel and Distributed Processing (IEEE, New York, 1980), p. 116.
  8. R. Smolley, “Button Board: a New Technology Interconnect for 2 and 3 Dimensional Packaging,” in Proceedings, International Symposium on Microelectronics (1985), pp. 326–333.
  9. “Button Contact Interconnects Eliminate Backplanes,” Electron. Prod. 16 (Apr.1989).
  10. R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications, reviewed in Appl. Opt., H. Kressel, Ed. (Springer-Verlag, Berlin, 1980). [CrossRef]
  11. M. Feldman, S. Esener, C. Guest, S. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  12. D. Hartman, “Digital High Speed Interconnects: a Study of the Optical Alternative,” Opt. Eng. 25, 1086–1102 (1986). [CrossRef]
  13. J. K. Butler, Semiconductor Injection Lasers (IEEE, NewYork, 1979).
  14. U. Efron, “Spatial Light Modulators for Optical Information Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).
  15. R. G. Walker, “Broadband (6 GHz) GaAs/AlGaAs Electro-Optic Modulator with Low Drive Power,” Appl. Phys. Lett. 54, 1613–1615 (1989). [CrossRef]
  16. S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988). [CrossRef]
  17. D. A. B. Miller, “Quantum Well Devices for Optical Computing and Switching,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), pp. 413–415.
  18. S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).
  19. G. Vella-Coliero, “Optimization of the Optical Sensitivity of p-i-n FET Receivers,” IEEE Electron Device Lett. EDL-9, 269–271 (1988). [CrossRef]
  20. K.-H. Brenner, A. Huang, “Optical Implementations of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  21. A. W. Lohman, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt. 25, 1543–1549 (1986). [CrossRef]
  22. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988). [CrossRef] [PubMed]
  23. T. Minemoto, S. Numata, K. Miyamoto, “Optical Parallel Logic Gate Using Light Modulators with the Pockels Effect: Applications to Fundamental Components for Optical Digital Computing,” Appl. Opt. 25, 4046–4052 (1986). [CrossRef] [PubMed]
  24. K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987). [CrossRef]
  25. K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).
  26. E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989). [CrossRef]
  27. L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986). [CrossRef]
  28. A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).
  29. K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694, 1988.
  30. J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.
  31. H. Unger, Planar Optical Waveguides and Fibers (Oxford U. P., London, 1977).
  32. C. T. Sullivan, “Optical Waveguide Circuits for Printed Wire Board Interconnections,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).
  33. C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).
  34. R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988). [CrossRef]
  35. C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited