OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 29, Iss. 8 — Mar. 10, 1990
  • pp: 1101–1105

Space invariant multiple imaging for hypercube interconnections

Yunlong Sheng  »View Author Affiliations

Applied Optics, Vol. 29, Issue 8, pp. 1101-1105 (1990)

View Full Text Article

Enhanced HTML    Acrobat PDF (583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A space invariant multiple imaging system using an array of tilted mirrors is proposed for optical free-space regular interconnections. The system has the potential for large number and high density of input nodes, high fanout capability, and low power loss. An eighteen-cube interconnection of 512 × 512 nodes could be implemented in this system using a 6 × 6 mirror array. Experimental results for a four-cube interconnection are shown.

© 1990 Optical Society of America

Original Manuscript: June 16, 1989
Published: March 10, 1990

Yunlong Sheng, "Space invariant multiple imaging for hypercube interconnections," Appl. Opt. 29, 1101-1105 (1990)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, “Fanin and Fanout with Optical Interconnections,” Opt. Acta 32, 12, 1489–1496 (1985). [CrossRef]
  2. J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984). [CrossRef]
  3. A. Dickinson, M. E. Prise, “A Free Space Optical Interconnection Scheme,” in Topical Meeting on Optical Computing Technical Digest, (Optical Society of America, Washington, DC, 1989), p. 132.
  4. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  5. A. W. Lohmann, “What Classical Optics Can Do for the Digital Computer,” Appl. Opt. 25, 1543–1549 (1986). [CrossRef] [PubMed]
  6. G. Eichmann, Y. Li, “Compact Optical Generalized Perfect Shuffle,” Appl. Opt. 26, 1167–1169 (1987). [CrossRef]
  7. G. E. Lohman, A. W. Lohmann, “Optical Interconnection Network Utilizing Diffraction Gratings,” Opt. Eng. 27, 893–900 (1988). [CrossRef]
  8. Q. W. Song, F. T. S. Yu, “Generalized Perfect Shuffle Using Optical Spatial Filtering,” Appl. Opt. 27, 1222–1223 (1988). [CrossRef] [PubMed]
  9. K. H. Brenner, A. Huang, “Optical Implementation of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  10. K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical computing with Symbolic Substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  11. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988). [CrossRef] [PubMed]
  12. Y. Sheng, “Light Effective 2-D Optical Perfect Shuffle Using Fresnel Mirrors,” Appl. Opt. 28, 3290–3292 (1989). [CrossRef] [PubMed]
  13. T. Feng, “A Survey of Interconnection Networks,” IEEE Comput. 14, 12–27 (1981). [CrossRef]
  14. N. F. Borrelli, D. L. Morse, “Microlens Arrays Produced by a Photolytic Technique,” Appl. Opt. 27, 476–479 (1988). [CrossRef] [PubMed]
  15. A. S. Kumar, R. M. Vasu, “Multiple Imaging and Multichannel Optical Processing with Split Lenses,” Appl. Opt. 26, 5345–5349 (1987). [CrossRef] [PubMed]
  16. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987). [CrossRef] [PubMed]
  17. J. M. Florence, “Joint-Transform Correlator Systems Using Deformable-Mirror Spatial Light Modulators,” Opt. Lett. 14, 341–343 (1989). [CrossRef] [PubMed]
  18. A. A. Sawchuk, “3-D Optical Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 813, 547–548 (1987).
  19. L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited