OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 8 — Mar. 10, 1990
  • pp: 1118–1125

Reconfigurable interconnections using photorefractive holograms

Shudong Wu, Qiwang Song, Andy Mayers, Don A. Gregory, and Francis T. S. Yu  »View Author Affiliations


Applied Optics, Vol. 29, Issue 8, pp. 1118-1125 (1990)
http://dx.doi.org/10.1364/AO.29.001118


View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using coupled wave theory and the law of refraction, diffraction properties of volume holograms are discussed. Reconfigurable interconnections by either wavelength tuning or spatial division techniques are proposed. Reflection type volume holograms can be used for a large number of reconfigurable interconnections in terms of finite wavelength tunability. Transmission volume holograms encoded in pinhole holograms can be easily reconfigured by spatial light modulator. Experimental demonstrations obtained by using these methods are presented.

© 1990 Optical Society of America

History
Original Manuscript: June 2, 1989
Published: March 10, 1990

Citation
Shudong Wu, Qiwang Song, Andy Mayers, Don A. Gregory, and Francis T. S. Yu, "Reconfigurable interconnections using photorefractive holograms," Appl. Opt. 29, 1118-1125 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-8-1118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, “Optical Interconnections for VLSI Systems,” Proc IEEE 72, 850–866 (1984). [CrossRef]
  2. A. A. Sawchuk, B. K. Jenkins, “Dynamic Optical Interconnections for Parallel Processors,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 143–149 (1986).
  3. P. A. Yeh, A. E. T. Chiou, J. Hong, “Optical Interconnection Using Photorefractive Dynamic Holograms,” Appl. Opt. 27, 2093–2096 (1988). [CrossRef] [PubMed]
  4. F. Lin, “Optical Holographic Interconnection Networks for Parallel and Distributed Processing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989).
  5. E. Bradley, P. K. L. Yu, A. R. Jonston, “System Issues Relating to Diode Requirements for VLSI Holographic Optical Interconnections,” Opt. Eng. 28, 201–211 (1989). [CrossRef]
  6. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Grating,” Bell Syst. Tech. J 48, 2902–2947 (1969).
  7. A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for Recording Multiple-Exposure Holograms with Equal Diffraction Efficiency in Photorefractive Media,” Opt. Lett. 14, 6–8 (1989). [CrossRef] [PubMed]
  8. L. Staeble, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple Storage and Erasure of Fixed Holograms in Fe-Doped LiNbO3,” Appl. Phys. Lett. 26, 182–186 (1975). [CrossRef]
  9. S. Xu, G. Mendes, S. Hart, J. C. Dainty, “Pinhole Hologram and its Applications,” Opt. Lett. 14, 107–109 (1989). [CrossRef] [PubMed]
  10. L. Solyman, D. J. Cooke, Volume Holography and Volume Gratings (Academic, New York, 1981).
  11. J. K. Yamamoto, A. S. Bhalla, “Growth of SrxBa1−xNb2O6 Single Crystal Fibers,” Mater. Res. Bull. 24, 761–765 (1989). [CrossRef]
  12. L. Hesselink, S. Redfield, “Photorefractive Holographic Recording in Strontium Barium Niobate Fibers,” Opt. Lett. 13, 877–879 (1988). [CrossRef] [PubMed]
  13. S. Gray, “A New Breed of Photonic Polymers,” Photon. Spectra 23, 9 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited