OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 8 — Mar. 10, 1990
  • pp: 1142–1149

Electrooptic polymer materials and devices for global optical interconnects

Charles A. Eldering, Stephen T. Kowel, M. A. Mortazavi, and P. F. Brinkley  »View Author Affiliations


Applied Optics, Vol. 29, Issue 8, pp. 1142-1149 (1990)
http://dx.doi.org/10.1364/AO.29.001142


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Global optical interconnects can provide high data rate parallel communication capability through access to the internal nodes of very large scale integrated circuits. Topographic arrays of polymeric electrooptic multilayer devices such as etalons or multilayer mirrors broadcast the data stored on the surface of the chip. Differential detection of this image permits interconnection without the need for high contrast ratios. An experimental demonstration of a point-to-point interconnection using a Fabry-Perot etalon with a polymeric thin film spacer is presented.

© 1990 Optical Society of America

History
Original Manuscript: June 1, 1989
Published: March 10, 1990

Citation
Charles A. Eldering, Stephen T. Kowel, M. A. Mortazavi, and P. F. Brinkley, "Electrooptic polymer materials and devices for global optical interconnects," Appl. Opt. 29, 1142-1149 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-8-1142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Kowel, N. Matloff, C. Eldering, “Electro-Optical Interface,” U.S. Patent4,813,772 (21Mar.1989).
  2. N. Matloff, S. T. Kowel, C. Eldering, “OPTIMUL: An Optical Interconnect for Multiprocessor Systems,” in Proceedings, 1988 International Conference on Supercomputing (St. Malo, France, 1988).
  3. D. K. Ferry, “Interconnection Lengths and VLSI,” IEEE Circuits Devices Mag. 1, 39–42 (July1985). [CrossRef]
  4. P. H. Enslow, “Multiprocessor Organization—a Survey,” Comput. Surv. 9, 103–129 (Mar.1977). [CrossRef]
  5. L. S. Hayes, R. L. Lau, D. P. Siewiork, D. W. Mizell, “A Survey of Highly Parallel Computing,” IEEE Comput. Mag.9–24 (Jan.1982).
  6. H. M. Ahmed, J. M. Celosme, M. Morf, “Highly Concurrent Computing Structures for Matrix Arithmetic and Signal Processing,” IEEE Comput. Mag.65–82 (Jan.1982). [CrossRef]
  7. S. T. Tewksbury, L. A. Hornak, “Communication Network Issues and High-Density Interconnects in Large-Scale Distributed Computing Systems,” IEEE J. Selected Areas Commun. 6, 587–609 (Apr.1988). [CrossRef]
  8. E. T. Lewis, “The VLSI Package- An Analytical Review,” IEEE Trans. Components Hybrids Manuf. Technol. CHMT-7, 197–201 (June1984). [CrossRef]
  9. S. K. Tewksbury, L. A. Hornak, “Wafer Level System Integration,” IEEE Circuits Devices Mag.22–30 (Sept.1989). [CrossRef]
  10. J. A. Neff, “Major Initiatives for Optical Computing,” Opt. Eng. 26, 2–9 (1987). [CrossRef]
  11. P. R. Haugen, R. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986). [CrossRef]
  12. D. S. Hartman, “Digital High Speed Interconnects: A Study of the Optical Alternative,” Opt. Eng. 25, 1186–1102 (1986). [CrossRef]
  13. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  14. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparisons Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  15. J. A. Fried, “Optical I/O for High Speed CMOS Systems,” Opt. Eng. 25, 1132–1141 (1986). [CrossRef]
  16. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984). [CrossRef]
  17. C. A. Eldering, “Evaluation of the Use of p-n Structures as Photodetectors in Silicon Integrated Circuits,” M.S. Thesis, Syracuse U. (1985).
  18. B. D. Clymer, J. Goodman, “Timing Uncertainties for Receivers in Optical Clock Distribution for VLSI,” Opt. Eng. 27, 944–954 (1988). [CrossRef]
  19. L. A. Bergman et al., “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986). [CrossRef]
  20. J. C. Kirsch, D. G. Gregory, T. D. Hudson, D. J. Lanteigne, “Design of Photopolymer Holograms for Optical Interconnect Applications,” Opt. Eng. 27, 301–308 (1988). [CrossRef]
  21. M. R. Feldman, C. C. Guest, “Computer Generated Holographic Optical Elements for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 26, 4377–4384 (1987). [CrossRef] [PubMed]
  22. R. H. Kingston, B. E. Burke, K. B. Nichols, F. J. Leonburger, “Spatial Light Modulation Using Electroabsorption in a GaAs Charge-Coupled Device,” Appl. Phys. Lett. 45, 413–415 (1982). [CrossRef]
  23. R. J. Simes et al., “Electrically Tunable Fabry-Perot Mirror Using Multiple Quantum Well Index Modulation,” Appl. Phys. Lett. 53, 637–639 (1988). [CrossRef]
  24. S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PZLT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986). [CrossRef]
  25. V. D. Antsigin, E. G. Kostov, V. K. Malinovsky, L. N. Sterelyukhina, “Electrooptics of Thin Ferroelectric Films,” Ferroelectrics 38, 761–763 (1981). [CrossRef]
  26. K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987). [CrossRef]
  27. K. D. Singer et al., “Electro-Optic Phase Modulation and Optical Second Harmonic Generation in Corona-Poled Polymer Films,” Appl. Phys. Lett. 53, 1800–1802 (1988). [CrossRef]
  28. I. P. Kaminow, E. H. Turner, “Linear Electrooptical Materials,” in CRC Handbook of Lasers, R. W. Pressley, Ed. (CRC Press, Cleveland, 1984), pp. 447–459.
  29. E. I. Gordon, J. D. Rigden, “The Fabry-Perot Electrooptic Modulator,” Bell Syst. Tech. J. 42, 155–179 (Jan.1963).
  30. J. T. Ruscio, “A Coherent Light Modulator,” IEEE J. Quantum Electron. QE-1, 182–183 (1965). [CrossRef]
  31. F. Gires, P. Tournois, “Interféromètre Utilisable Pour la Compression d’Impulsions Lumineuses en Fréquence,” C.R. Acad. Sci. 258, group 5, 6112–6115 (1964).
  32. C. A. Birnbach, “Device for Modulating and Reflecting Electromagnetic Radiation Employing Electro-Optic Layer Having a Variable Index of Refraction,” U.S. Patent4,786,128 (22Nov.1988).
  33. C. A. Eldering, S. T. Kowel, A. Knoesen, “Electrically Induced Transmissivity Modulation in Polymeric Thin Film Fabry-Perot Etalons,” Appl. Opt. 28, 4442–4445 (1989). [CrossRef] [PubMed]
  34. A. Dulic, C. Flytzanis, “A New Class of Conjugated Molecules with Large Second Order Polarizability,” Opt. Commun. 25, 402–406 (1978). [CrossRef]
  35. D. J. Williams, “Organic and Non-Polymeric Materials with Large Optical Nonlinearities,” Angew. Int. Ed. Eng. 23, 690–703 (1984). [CrossRef]
  36. G. F. Lipscomb, A. F. Garito, R. S. Narang, “An Exceptionally Large Linear Electro-Optic Effect in the Organic Solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981). [CrossRef]
  37. K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-Order Nonlinear Optical Processes in Orientationally Ordered Materials: Relationship Between Molecular and Macroscopic Properties,” J. Opt. Soc. Am. B 4, 968–976 (1987). [CrossRef]
  38. A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, “Corona-Onset Poling of Nonlinear Molecularly Doped Films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials, Vol. 9 (Optical Society of America, Washington, DC, 1988), pp. 244–247.
  39. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, A. Dienes, “Second Harmonic Generation and Absorption Studies of Polymer/Dye Films Oriented by Corona-Onset Poling at Elevated Temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989). [CrossRef]
  40. B. L. Anderson, R. C. Hall, B. G. Higgins, G. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically Enhanced Second Harmonic Generation in Polymer-Dye Langmuir-Blodgett Films: A New Bilayer Architecture,” Synth. Met. 28, D683–D689 (1989). [CrossRef]
  41. B. L. Anderson, J. M. Hoover, G. A. Lindsay, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-Harmonic Generation in Langmuir-Blodgett Multilayers of Stilbazolium Chloride Polyethers,” in Fourth International Conference on Langmuir-Blodgett Films (Tsukuba, Japan, Apr. 1989); to appear in Thin Solid FilmsXX, (1990).
  42. C. A. Eldering, S. T. Kowel, A. Knoesen, B. L. Anderson, B. G. Higgins, “Characterization of Modulated Spin-Coated and L/B Thin Film Etalons,” in Fourth Intenational Conference on Langmuir-Blodgett Films (Tsukuba, Japan, Apr. 1989); to appear in Thin Solid FilmsXX, (1990).
  43. S. H. Wemple, M. DiDomenico, Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1972), pp. 265–383.
  44. A. Yariv, P. Yeh, Optical Waves in Crystals (Academic, New York, 1978).
  45. S. T. Kowel, “Beam Spread and the Heisenberg Uncertainty Principle,” J. Franklin Inst. 297, 135–140 (1974). [CrossRef]
  46. B. L. Kasper, C. A. Burrus, J. R. Talman, K. L. Hall, “Balanced Dual-Detector Receiver for Optical Heterodyne Communication at Gbit/s Rates,” Electron. Lett. 22, 413–415 (1986). [CrossRef]
  47. K. D. Singer, J. E. Shon, S. J. Lalama, “Second Harmonic Generation in Poled Polymer Films,” Appl. Phys. Lett. 49, 248–250 (1986). [CrossRef]
  48. M. A. Mortazavi, A. Knoesen, J. M. Hoover, R. A. Henry, S. T. Kowel, G. A. Lindsay, “Second Order Nonlinear Properties of COPET Coumaromethacrylate Copolymers,” in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited