OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 29, Iss. 9 — Mar. 20, 1990
  • pp: 1259–1264

Phase matching considerations for generalized three-wave mixing in nonlinear anisotropic crystals

Robert A. Morgan  »View Author Affiliations


Applied Optics, Vol. 29, Issue 9, pp. 1259-1264 (1990)
http://dx.doi.org/10.1364/AO.29.001259


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase matching in anisotropic second-order nonlinear optical crystals is studied. All the possible phase matching configurations and existence conditions for general collinear three-wave mixing interactions are derived for propagation within the crystal principal planes. Closed form expressions for the critical phase matching angles are given wherever possible.

© 1990 Optical Society of America

History
Original Manuscript: February 23, 1989
Published: March 20, 1990

Citation
Robert A. Morgan, "Phase matching considerations for generalized three-wave mixing in nonlinear anisotropic crystals," Appl. Opt. 29, 1259-1264 (1990)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-29-9-1259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons, New York, 1984).
  2. F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. 1: Linear Optics (Wiley & Sons, New York, 1985); Applied Classical Electrodynamics, Vol. 2: Nonlinear Optics (Wiley & Sons, New York, 1986).
  3. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  4. D. A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Phys. Rev. 126, 1977–1979 (1962). [CrossRef]
  5. S. Singh, “Nonlinear Optical Properties,” in CRC Handbook of Laser Science and Technology, Vol. VI (CRC Press, Boca Raton, Florida, 1984).
  6. W. S. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, “Demonstration of High Efficiency Third Harmonic Conversion of High Power Nd-Glass Laser Radiation,” Opt. Commun. 34, 469–473 (1980). [CrossRef]
  7. R. S. Craxton, “Theory of High Efficiency Third Harmonic Generation of High Power Nd-Glass Laser Radiation,” Opt. Commun. 34, 474–478 (1980). [CrossRef]
  8. R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Dual-Frequency Nd:YAG Laser for the Study and Application of Nonlinear Optical Crystals,” Opt. Eng. 26, 1240–1244 (1987). [CrossRef]
  9. J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of Blue Coherent Radiation by Sum Frequency Mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987). [CrossRef]
  10. W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, W. Lenth, “Generation of Blue Light by Intracavity Frequency Mixing of the Laser and Pump Radiation of a Miniature Neodymium:Yttrium Aluminum Garnet Laser,” Appl. Phys. Lett. 52, 85–87 (1988). [CrossRef]
  11. Lawrence S. Goldberg, “Narrow-Bandwidth Tunable Infrared Difference-Frequency Generation at High Repetition Rates in LilO3,” Appl. Opt. 14, 653–656 (1975); K. Kato, “High Power Difference-Frequency Generation at 4.4–5.7μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119–120 (1985). [CrossRef] [PubMed]
  12. M. Born, E. Wolf, Principles of Optics (Permagon, New York, 1980).
  13. Jean-Claude Baumert, Peter Gtinter, “Noncritically Phase-Matched Sum Frequency Generation and Image Upconversion in KNbO3 Crystals,” Appl. Phys. Lett. 50, 554–556 (1987). [CrossRef]
  14. P. Günter, “Near-Infrared Noncritically Phase-Matched Second Harmonic Generation in KNbO3,” Appl. Phys. Lett. 34, 650–652 (1979). [CrossRef]
  15. R. A. Stolzenberger, C. C. Hsu, N. Peyghambarian, J. J. E. Reid, R. A. Morgan, “Type II Sum Frequency Generation in Flux and Hydrothermally Grown KTP at 1.319 and 1.338 Microns,” IEEE Photon. Technol. Lett., 1, 446–448 (1989). [CrossRef]
  16. Robert A. Morgan, Frederic A. Hopf, “Measurement of the Temperature Tuning Coefficient of Lithium Niobate Using Nonlinear Optical Interferometry,” Appl. Opt. 25, 3011–3013 (1986); Robert A. Morgan, K. I. Kang, C. C. Hsu, Chris L. Koliopoulos, Nasser Peyghamarian, “Measurement of the Thermal Diffusivity of Nonlinear Anisotropic Crystals Using Optical Interferometry,” Appl. Opt. 26, 5266–5271 (1987). [CrossRef] [PubMed]
  17. David Eimerl, “Sellmeier Constants and Related Data For KTP,” paper presented at Workshop on Nonlinear Optical Materials, Annapolis, MD, April 28–29, 1986; D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, G. Kennedy, “Deuterated L-Arginine Phosphate: a New Efficient Nonlinear Crystal,” IEEE J. Quantum Electron. 25, 179–193 (1989). [CrossRef]
  18. H. Ito, N. Hatsuhiko, H. Inaba, “Generalized Study on Angular Dependence of Induced Second-Order Nonlinear Optical Polarizations and Phase Matching in Biaxial Crystals,” J. Appl. Phys. 46, 3992–3998 (1975). [CrossRef]
  19. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976). [CrossRef]
  20. R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a Harmonic Generator for Nd:YAG Lasers,” Laser Focus/Electro-Opt. 21, 110–124.
  21. R. A. Morgan, F. A. Hopf, N. Peyghambarian, “Three-Wave Mixing Uses of a Novel Dual-Frequency Nd:YAG Laser,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988) paper ThAi.
  22. P. Günter, “Nonlinear Optical Crystals for Frequency Doubling with Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 236, 8–18 (1980).
  23. M. V. Hobden, “Phase-Matched Second-Harmonic Generation in Biaxial Crystals,” J. Appl. Phys. 38, 4365–4372 (1967). [CrossRef]
  24. J. Q. Yao, T. S. Fahlen, “Calculations of Optimum Phase Match Parameters for the Biaxial Crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited