OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 30, Iss. 12 — Apr. 20, 1991
  • pp: 1537–1546

Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot

Charles W. Bruce, Thor F. Stromberg, Kristan P. Gurton, and J. B. Mozer  »View Author Affiliations

Applied Optics, Vol. 30, Issue 12, pp. 1537-1546 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (2416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mass density normalized absorption and total scattering coefficients have been measured using in situ techniques at selected wavelengths from the visible to ~1 cm for soot generated by the open combustion of diesel fuel. Particle morphologies are complex although similar to those of soots of other hydrocarbons and methods of generation. An ellipsoidal model has been applied as an approximation to the often multiconnected, chainlike aerosol and then compared with the measured results. The experimental results show an approximate (λ)−1 dependence over more than five decades of wavelength data. There is only general agreement with the simplified calculations in this feature as well as in the magnitude.

© 1991 Optical Society of America

Original Manuscript: June 18, 1990
Published: April 20, 1991

Charles W. Bruce, Thor F. Stromberg, Kristan P. Gurton, and J. B. Mozer, "Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot," Appl. Opt. 30, 1537-1546 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Y. Kondratyev, M. A. Prokofyev, “Atmospheric Aerosol and Its Climatic Effects,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 902–908 (1984).
  2. J. B. Pollack, O. B. Toon, D. Weidman, “Radiative Properties of the Background Stratospheric Aerosols and Implications for Perturbed Conditions,” Geophys. Res. Lett. 8, 26–34 (1981). [CrossRef]
  3. I. S. Rasool, S. H. Schneider, “Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate,” Science 173, 138–141 (1981). [CrossRef]
  4. J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116–138 (1983). [CrossRef]
  5. Y. M. Timofeyev, S. P. Obraztsov, “Influence of Aerosols in Shaping the Outgoing Thermal Radiation,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 820–826 (1984).
  6. G. Yamamoto, M. Tanaka, “Increase of Global Albedo Due to Air Pollution,” J. Atmos. Sci. 29, 1405–1412 (1972). [CrossRef]
  7. R. W. Bergstrom, R. Viskanta, “Modeling of the Effects of Gaseous and Particulate Pollutants in the Urban Atmosphere. Part 1: Thermal Structure,” J. Appl. Meteorol. 12, 901–912 (1973). [CrossRef]
  8. A. P. Chavkovskiy, “Statistical Analysis of Optical Characteristics of the Tropospheric Aerosol Under Desert Conditions,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 648–653 (1984).
  9. L. B. Gabelko, Y. S. Lyubovtseva, “IR Absorption Index of the Atmospheric Aerosol,” Izv. Acad. Sci. U.S.S.R. Atmos. Oceanic Phys. 20, 640–647 (1984).
  10. S. Chippett, W. A. Gray, “The Size and Optical Properties of Soot Particles,” Combust. Flame 31, 149–159 (1978). [CrossRef]
  11. V. P. Tomasselli, R. Rivera, D. C. Edewaard, K. D. Moller, “Infrared Optical Constants of Black Powders Determined from Reflection Measurements,” Appl. Opt. 20, 3961–3967 (1981). [CrossRef]
  12. J. D. Felske, T. T. Charalampopoulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivity of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263–283 (1984). [CrossRef]
  13. W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat-Flux Calculations,” J. Heat Transfer 91, 100–104 (1969). [CrossRef]
  14. W. D. Erickson, G. C. Williams, H. C. Hottel, “Light Scattering Measurements as seen in a Benzene-Air Flame,” Combust. Flame 8, 127–132 (1964). [CrossRef]
  15. P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719–729 (1968). [CrossRef]
  16. C. W. Bruce, N. M. Richardson, “Propagation at 10 μm Through Smoke Produced by Atmospheric Combustion of Diesel Fuel,” Appl. Opt. 22, 1051–1055 (1983). [CrossRef] [PubMed]
  17. C. W. Bruce, N. M. Richardson, “Millimeter Wave Gas/Aerosol Spectrophone and Application to Diesel Smoke,” Appl. Opt. 23, 13–15 (1984). [CrossRef] [PubMed]
  18. D. M. Roessler, F. R. Faxvog, “Optoacoustical Measurement of Optical Absorption in Acetylene Smoke,” J. Opt. Soc. Am. 69, 1699–1704 (1979). [CrossRef]
  19. D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon Variation with Air/Fuel Ratio,” in Particulate Carbon Formation During Combustion, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 57.
  20. H. A. Szymanski, IR-Theory and Practice of Infrared Spectroscopy (Plenum, New York, 1964), Chap. 5.
  21. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  22. C. W. Bruce, R. E. Lee, “Millimeter Wavelength Absorption by Chlorodifluoromethane,” Technical Report, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002 (1987).
  23. J. J. Gallagher, D. P. Campbell, “Quantitative Absorption Measurements of Freon 22 at 94 GHz,” Final Technical Report, GIT Project No. A-4106, Georgia Institute of Technology, Atlanta, GA (1986).
  24. M. V. Berry, “Diffractals,” J. Phys. A: Math. Nucl. Gen. 12, 781–797 (1979). [CrossRef]
  25. H. G. E. Hentschel, “Fractal Dimension of Generalized Diffusion-Limited Aggregates,” Phys. Rev. Lett. 52, 212–215 (1984). [CrossRef]
  26. M. E. Cates, “Homogeneity and Spectral Dimension of Aggregation Fractals,” J. Phys. A: Math. Nucl. Gen. 17, L487–L489 (1984). [CrossRef]
  27. R. Jullien, M. Kolb, R. Botet, “Diffusion Limited Aggregation with Directed and Anisotropic Diffusion,” J. Phys. Paris 45, 395–399 (1984).
  28. G. W. Mulholland, R. J. Samson, R. D. Mountain, M. H. Ernst, “Cluster Size Distribution for Free Molecular Agglomeration,” Energy and Fuels 2, 481–486 (1988). [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), p. 70.
  30. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 141.
  31. O. Edoh, “The Optical Properties of Carbon,” Ph.D. Dissertation, U. Arizona/Tucson (1987).
  32. A. Borghesi, E. Bussoletti, L. Colangeli, A. Minafra, F. Rubini, “The Absorption Efficiency of Submicron Amorphous Carbon Particles Between 2.5 and 40 μm,” Infrared Phys. 23, 85–92 (1983). [CrossRef]
  33. M. R. Querry, “Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet,” Technical Report No. CROEC-CR-88009, Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD (1987).
  34. P. Delhaes, F. Carmona, “Physical Properties of Noncrystalline Carbons,” in Chemistry and Physics of Carbon, Vol. 17, P. L. Walker, P. A. Thrower, Eds. (Marcel Dekker, Inc, New York, 1981) p. 89–124.
  35. M. W. Williams, E. T. Arakawa, “Optical Properties of Glassy Carbon from 0 to 82 eV,” J. Appl. Phys. 43, 3460–3463 (1972). [CrossRef]
  36. N. E. Pedersen, J. C. Pederson, P. C. Waterman, “Absorption and Scattering by Conductive Fibers: Basic Theory and Comparison with Asymptotic Results,” Annual Report, Contract F49620-84-C-0045, Air Force Office of Scientific Research, Bolling AFB, DC (1985).
  37. K. A. Fuller, G. W. Kattawar, “Consummate Solution to the Problem of Classical Electromagnetic Scattering by an Ensemble of Spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988). [CrossRef] [PubMed]
  38. A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves From Two Concentric Spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  39. R. W. Fenn, H. Oser, “Scattering Properties of Concentric Soot-Water Spheres for Visible and Infrared Light,” Appl. Opt. 4, 1504–1509 (1965). [CrossRef]
  40. M. R. Querry, “Optical Properties of Natural Minerals and Other Materials in the 350–50,000 cm−1 Spectral Region,” Final Report, Contract DAAG-29-79-CO131, U.S. Army Research Office, Research Triangle Park, NC (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited