OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 30, Iss. 16 — Jun. 1, 1991
  • pp: 2151–2158

Design of diffractive singlets for monochromatic imaging

Dale A. Buralli and G. Michael Morris  »View Author Affiliations

Applied Optics, Vol. 30, Issue 16, pp. 2151-2158 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Seidel aberrations of a rotationally-symmetric diffractive lens with an arbitrary phase profile are presented. It is shown that by a proper choice of phase function and aperture stop position, third-order coma and astigmatism can be eliminated for any chosen conjugate ratio. Since a diffractive lens has an inherent zero value for the Petzval sum, the image plane is flat in both tangential and sagittal meridians. The substrate curvature of the lens may be chosen to introduce a prescribed amount of distortion to allow for use as a Fourier transform lens or a laser scan lens. Examples are given of lens performance in finite conjugate imaging and laser scanning, where the fθ condition is satisfied.

© 1991 Optical Society of America

Original Manuscript: July 6, 1990
Published: June 1, 1991

Dale A. Buralli and G. Michael Morris, "Design of diffractive singlets for monochromatic imaging," Appl. Opt. 30, 2151-2158 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Lord Rayleigh, laboratory notebook, 11 Apr. 1871, quoted in R. W. Wood, Physical Optics (Macmillan, New York, 1934), pp. 37–38.
  2. J. Kirz, “Phase Zone Plates for X-Rays and the Extreme UV,” J. Opt. Soc. Am. 64, 301–309 (1974). [CrossRef]
  3. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The Kinoform: a New Wavefront Reconstruction Device,” IBM J. Res. Dev. 13, 150–155 (1969); J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform Lenses,” Appl. Opt. 9, 1883–1887 (1970). [CrossRef] [PubMed]
  4. W. B. Veldkamp, G. J. Swanson, D. C. Shaver, “High Efficiency binary Lenses,” Opt. Commun. 53, 353–358 (1985); G. J. Swanson, W. B. Veldkamp, “Binary Lenses for Use at 10.6 Micrometers,” Opt. Eng. 24, 791–795 (1985); G. J. Swanson, W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared Systems,” Opt. Eng. 28, 605–608 (1989). [CrossRef]
  5. K. Miyamoto, “The Phase Fresnel Lens,” J. Opt. Soc. Am. 51, 17–20 (1961). [CrossRef]
  6. P. P. Clark, C. Londono, “Production of Kinoforms by Single Point Diamond Machining,” Opt. News 15, 39–40 (1989); J. A. Futhey, “Diffractive Bifocal Intraocular Lens,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 142–149 (1989); G. M. Morris, D. A. Buralli, “Wide Field Diffractive Lenses for Imaging, Scanning, and Fourier Transformation,” Opt. News 15, 41–42 (1989). [CrossRef]
  7. L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic Fabrication of Thin Film Lenses,” Opt. Commun. 5, 232–235 (1972). [CrossRef]
  8. V. P. Koronkevich, “Computer Synthesis of Diffraction Optical Elements,” in Optical Processing and Computing, H. H. Arsenault, T. Szoplik, B. Macukow, Eds (Academic, Boston, 1989), pp. 277–313.
  9. D. A. Buralli, J. R. Rogers, “Some Fundamental Limitations of Achromatic Holographic Systems,” J. Opt. Soc. Am. A 6, 1863–1868 (1989). [CrossRef]
  10. A. I. Tudorovskii, “An Objective with a Phase Plate,” Opt. Spectrosc. 6, 126–133 (1959).
  11. H. Madjidi-Zolbanine, C. Froehly, “Holographic Correction of Both Chromatic and Spherical Aberrations of Single Glass Lenses,” Appl. Opt. 18, 2385–2393 (1979). [CrossRef] [PubMed]
  12. G. M. Morris, “Diffraction Theory for an Achromatic Fourier Transformation,” Appl. Opt. 20, 2017–2025 (1981). [CrossRef] [PubMed]
  13. T. Stone, N. George, “Hybrid Diffractive–Refractive Lenses and Achromats,” Appl. Opt. 27, 2960–2971 (1988). [CrossRef] [PubMed]
  14. T. A. Fritz, J. A. Cox, “Diffractive Optics for Broadband Infrared Imagers: Design Examples,” Proc. Soc. Photo-Opt. Instrum. Eng. 1052, 25–31 (1989).
  15. D. Falkis, G. M. Morris, “Broadband Imaging with Holographic Lenses,” Opt. Eng. 28, 592–598 (1989).
  16. W. C. Sweatt, “Describing Holographic Optical Elements as Lenses,” J. Opt. Soc. Am. 67, 803–808 (1977). [CrossRef]
  17. W. A. Kleinhans, “Aberrations of Curved Zone Plates and Fresnel Lenses,” Appl. Opt. 16, 1701–1704 (1977). [CrossRef] [PubMed]
  18. W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, 1986), pp. 130–140.
  19. Ref. 18, pp. 226–234.
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 77–83.
  21. Ref. 17, pp. 1702.
  22. Ref. 18, pp. 148–152.
  23. Ref. 18, pp. 241–246.
  24. Ref. 18, p. 146.
  25. D. C. Sinclair, “Designing Diffractive Optics using the Sweatt Model,” Sinclair Optics Design Notes, Vol. 1, No. 1 (Winter1990).
  26. Ref. 18, pp. 152–153.
  27. super-oslo is a trademark of Sinclair Optics, 6780 Palmyra Rd., Fairport, NY 14450.
  28. K. von Bieren, “Lens Design for Optical Fourier Transform Systems,” Appl. Opt. 10, 2739–2742 (1971). [CrossRef] [PubMed]
  29. Ref. 18, pp. 93–98.
  30. D. A. Buralli, G. M. Morris, “Design of a Wide Field Diffractive Landscape Lens,” Appl. Opt. 28, 3950–3959 (1989). [CrossRef] [PubMed]
  31. R. E. Hopkins, M. J. Buzawa, “Optics for Laser Scanning,” Opt. Eng. 15, 90–94 (1976).
  32. See Ref. 31, pp. 93–94.
  33. D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical Performance of Holographic Kinoforms,” Appl. Opt. 28, 976–983 (1989). [CrossRef] [PubMed]
  34. H. Sonnenberg, “Laser-Scanning Parameters and Latitudes in Laser Xerography,” Appl. Opt. 21, 1745–1751 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited