OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 30, Iss. 17 — Jun. 10, 1991
  • pp: 2354–2362

Complex amplitude reflectance of the liquid crystal light valve

Kanghua Lu and Bahaa E. A. Saleh  »View Author Affiliations


Applied Optics, Vol. 30, Issue 17, pp. 2354-2362 (1991)
http://dx.doi.org/10.1364/AO.30.002354


View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complex amplitude reflectance of the liquid crystal light valve (LCLV) is determined as a function of the writing intensity and applied voltage using an approximate model. The input and output polarizers are assumed to have arbitrary directions. The theoretical results based on this model match our experimental measurements. This theory allows us to optimize the operation of the LCLV as an intensity or phase-only spatial light modulator. When the polarizers are orthogonal and the input polarizer is at −34° with the front liquid crystal director, the intensity reflectance reaches 100% (compared to 81% for the conventional configuration). Phase-only modulation is realizable by use of appropriate applied voltage bias and configuration of polarizers.

© 1991 Optical Society of America

History
Original Manuscript: October 20, 1989
Published: June 10, 1991

Citation
Kanghua Lu and Bahaa E. A. Saleh, "Complex amplitude reflectance of the liquid crystal light valve," Appl. Opt. 30, 2354-2362 (1991)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-30-17-2354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, “New Real Time Noncoherent to Coherent Light Image Converter: Hybrid Field Effect Liquid Crystal Light Valve,” Opt. Eng. 14, 217–225 (1975).
  2. W. P. Bleha, “Progress in Liquid Crystal Light Valves,” Laser Focus/Electro-optics, 111–120 (Oct.1983).
  3. U. Efron, P. O. Braatz, M. J. Little, R. N. Schwartz, J. Grinberg, “Silicon Liquid Crystal Light Valves: Status and Issues,” Opt. Eng. 22, 682–686 (1983).
  4. U. Efron, S. T. Wu, J. Grinberg, L. D. Hess, “Liquid-Crystal-Based Visible-to-Infrared Dynamic Image Converter,” Opt. Eng. 24, 111–118 (1985).
  5. W. P. Bleha, L. T. Lipton, E. Wiener-Avnear, J. Grinberg, P. G. Reif, D. P. Casasent, H. B. Brown, B. V. Markevitch, “Application of Liquid Crystal Light Valve to Real Time Optical Data Processing,” Opt. Eng. 17, 371–384 (1978).
  6. A. Fisher, L. Lee, “The Current Status of Two-Dimensional Spatial Light Modulator Technology,” Proc. Soc. Photo-Opt. Instrum. Eng. 634, 352–371 (1986).
  7. M. Schadt, W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 15, 127–128 (1971). [CrossRef]
  8. D. W. Berreman, “Optics in Stratified and Anisotropic Media: 4 × 4-Matrix Formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  9. R. M. A. Azzam, N. M. Bashara, “Simplified Approach to the Propagation of Polarized Light in Anisotropic Media—Application to Liquid Crystals,” J. Opt. Soc. Am. 62, 1252–1257 (1972). [CrossRef]
  10. D. W. Berreman, “Optics in Smoothly Varying Anisotropic Planar Structures: Application to Liquid-Crystal Twist Cells,” J. Opt. Soc. Am. 63, 1374–1379 (1973). [CrossRef]
  11. L. A. Goodman, “Liquid Crystal Displays,” J. Vac. Sci. Technol. 10, 804–823 (1973). [CrossRef]
  12. C. H. Gooch, H. A. Tarry, “Optical Characteristics of Twisted Nematic Liquid-Crystal Film,” Electron. Lett. 10, 2–4 (1974). [CrossRef]
  13. D. W. Berreman, “Dynamics of Liquid-Crystal Twist Cells,” Appl. Phys. Lett. 25, 12–15 (1974). [CrossRef]
  14. C. H. Gooch, H. A. Tarry, “The Optical Properties of Twisted Nematic Liquid Crystal Structures with Twisted Angle ≤90°,” Appl. Phys. D 8, 1575–1584 (1975). [CrossRef]
  15. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1975), Chap. 3.
  16. J. Grinberg, A. D. Jacobson, “Transmission Characteristics of a Twisted Nematic Liquid-Crystal Layer,” J. Opt. Soc. Am. 66, 1003–1009 (1976). [CrossRef]
  17. G. Buar, “Optical Characteristics of Liquid Crystal Displays,” in Physics and Chemistry of Liquid Crystal Devices, G. J. Sprokel, Ed. (Plenum, New York, 1980), pp. 61–78.
  18. R. J. Gagnon, “Liquid-Crystal Twist-Cell Optics,” J. Opt. Soc. Am. 71, 348–353 (1981). [CrossRef]
  19. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.
  20. F. Leenhots, M. Schadt, “Optics of Twisted Nematic and Supertwisted Nematic Liquid-Crystal Displays,” J. Appl. Phys. 60, 3275–3281 (1986). [CrossRef]
  21. K. Lu, B. E. A. Saleh, “Theory and Design of the Liquid Crystal TV as an Optical Phase Modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  22. D. A. Yocky, T. H. Barns, K. Matsumoto, N. Ooyama, K. Matusda, “Simple Measurement of the Phase Modulation Capability of Liquid Crystal Phase-Only Light Modulators,” Optik 84, 140–144 (1990).
  23. U. Efron, S. T. Wu, T. D. Bates, “Nematic Liquid Crystals for Spatial Light Modulators: Recent Studies,” J. Opt. Soc. Am. B 3, 247–252 (1986). [CrossRef]
  24. N. Konforti, E. Marom, S.-T. Wu, “Phase-Only Modulation with Twisted Nematic Liquid-Crystal Spatial Light Modulators,” Opt. Lett. 13, 251–253 (1988). [CrossRef] [PubMed]
  25. K. Lu, B. E. A. Saleh, “Optimal Twist and Polarization Angles for the Reflective Liquid-Crystal Light Modulators,” OSA Annual MeetingTechnical Digest Series, Vol. 15 (Optical Society of America, Washington, DC, 1990), p. 255.
  26. F. J. Kahn, “Electric-Field-Induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence,” Appl. Phys. Lett. 20, 199–201 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited