OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 30, Iss. 18 — Jun. 20, 1991
  • pp: 2465–2480

Light propagation characteristics for arbitrary wavevector directions in biaxial media by a coordinate-free approach

Theresa A. Maldonado and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 30, Issue 18, pp. 2465-2480 (1991)
http://dx.doi.org/10.1364/AO.30.002465


View Full Text Article

Enhanced HTML    Acrobat PDF (2012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The general case of light propagation in lossless anisotropic media occurs in crystals that are biaxial, either naturally so or by induced means (e.g., by electrooptic effect). In these crystals the optical properties, such as the refractive indices, change with propagation direction and are conveniently described by the two-sheeted wavevector surface. Most published work treats light propagation only in the principal planes of the crystal, where the wavevector surface reduces to a circle and an ellipse and the mathematics is simplified. Commonly, however, a biaxial bulk or waveguide device, especially an active device, will be oriented so that the light propagation is not in a principal plane. A complete and concise coordinate-free approach is presented for isolating each sheet, thereby providing a convenient means for calculating the directional optical properties of the two decoupled waves for arbitrary wavevector directions and birefringence levels. The versatility of this approach coupled with available graphics software is demonstrated by displaying numerous cross sections of the wavevector surfaces.

© 1991 Optical Society of America

History
Original Manuscript: May 7, 1990
Published: June 20, 1991

Citation
Theresa A. Maldonado and Thomas K. Gaylord, "Light propagation characteristics for arbitrary wavevector directions in biaxial media by a coordinate-free approach," Appl. Opt. 30, 2465-2480 (1991)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-30-18-2465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, special issue on Electro-Optic Materials and Devices, IEEE J. Quantum Electron. QE-23 (1987).
  2. W. J. Tomlinson, C. A. Brackett, “Telecommunications Applications of Integrated Optics and Optoelectronics,” Proc. IEEE 75, 1512–1523 (1987). [CrossRef]
  3. E. Voges, A. Neyer, “Integrated-Optic Devices on LiNbO3 for Optical Communication,” IEEE/OSA J. Lightwave Technol. LT-5, 1229–1238 (1987). [CrossRef]
  4. H. F. Taylor, “Application of Guided-Wave Optics in Signal Processing and Sensing,” Proc. IEEE 75, 1524–1535 (1987). [CrossRef]
  5. See, for example, special issue on Optical Computing, Proc. IEEE 72 (1984).
  6. T. K. Gaylord, E. I. Verriest, “Matrix Triangularization Using Arrays of Integrated Optical Givens Rotation Devices,” Computer 20, 59–66 (1987). [CrossRef]
  7. M. Born, Optik (Springer-Verlag, Berlin, 1933). [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).
  9. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1983).
  10. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).
  11. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1965).
  12. M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986).
  13. D. R. Lovett, Tensor Properties of Crystals (Adam Hilger, Philadelphia, 1989).
  14. T. A. Maldonado, T. K. Gaylord, “Electro-Optic Effect Calculations: Simplified Procedure for Arbitrary Cases,” Appl. Opt. 27, 5051–5066 (1988). [CrossRef] [PubMed]
  15. F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Saunders, New York, 1961).
  16. V. Ramaswamy, “Propagation in Asymmetrical Anisotropic Film Waveguides,” Appl. Opt. 13, 1363–1371 (1974). [CrossRef] [PubMed]
  17. S. Yamamoto, Y. Koyamada, T. Makimoto, “Normal-Mode Analysis of Anisotropic and Gyrotropic Thin-Film Waveguides for Integrated Optics,” J. Appl. Phys. 43, 5090–5097 (1972). [CrossRef]
  18. F. I. Fedorov, Optics of Anisotropic Media (Izd. AN BSSR, Minsk, 1958).
  19. H. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw-Hill, New York, 1983).
  20. I. V. Lindell, “Coordinate Independent Dyadic Formulation of Wave Normal and Ray Surfaces of General Anisotropic Media,” J. Math. Phys. 14, 65–67 (1973). [CrossRef]
  21. H. Gelman, “General Expansion of the Determinant of the Maxwell Dyadic,” J. Math. Phys. 11, 3053–3054 (1970). [CrossRef]
  22. K. S. Kunz, “Treatment of Optical Propagation in Crystals Using Projection Dyadics,” Am. J. Phys. 45, 267–269 (1977). [CrossRef]
  23. H. C. Chen, “A Coordinate-Free Approach to Wave Reflection from a Uniaxially Anisotropic Medium,” IEEE Trans. Microwave Theory Tech. MTT-31, 331–336 (1983). [CrossRef]
  24. H. C. Chen, “A Coordinate-Free Approach to Wave Reflection from an Anisotropic Medium,” Radio Sci. 16, 1213–1215 (1981). [CrossRef]
  25. T. W. Johnston, “Plane-Wave Dispersion in Gyrotropic Media,” Radio Sci. 4, 729–732 (1969). [CrossRef]
  26. For example, AutoCAD Release 9, Autodesk, Inc., Publication TD106-010 (7Jan.1988).
  27. F. I. Fedorov, Theory of Elastic Waves in Crystals (Plenum, New York, 1968). [CrossRef]
  28. J. W. Gibbs, E. B. Wilson, Vector Analysis (Scribner, New York, 1907).
  29. C. E. Weatherburn, Advanced Vector Analysis (Bell, London, 1928).
  30. A. Knoesen, M. G. Moharam, T. K. Gaylord, “Electromagnetic Propagation at Interfaces and in Waveguides in Uniaxial Crystals: Surface Impedance/Admittance Approach,” Appl. Phys. B 38, 171–178 (1985). [CrossRef]
  31. A. E. Taylor, W. R. Mann, Advanced Calculus (Wiley, New York, 1972).
  32. A. Knoesen, T. K. Gaylord, M. G. Moharam, “Hybrid Guided Modes in Uniaxial Dielectric Planar Waveguides,” IEEE/OSA J. Lightwave Technol. LT-6, 1083–1104 (1988). [CrossRef]
  33. T. A. Maldonado, T. K. Gaylord, “Hybrid Guided Modes in Biaxial Dielectric Planar Waveguides,” to be published.
  34. B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).
  35. G. Strang, Linear Algebra and Its Applications (Wiley, New York, 1971).
  36. C. R. Rao, S. K. Mitra, Generalized Inverse of Matrices and Its Applications (Wiley, New York, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited