OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 30, Iss. 18 — Jun. 20, 1991
  • pp: 2617–2627

Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence

Kin Pui Chan, Dennis K. Killinger, and Nobuo Sugimoto  »View Author Affiliations

Applied Optics, Vol. 30, Issue 18, pp. 2617-2627 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (1481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We performed an experimental study on the effect of atmospheric turbulence on heterodyne and direct detection lidar at 1 μm, employing a pulsed Nd:YAG bistatic focused beam lidar that permitted simultaneous heterodyne and direct detection of the same lidar returns. The average carrier-to-noise ratio and statistical fluctuation level in the lidar return signals were measured in various experimental and atmospheric conditions. The results showed that atmospheric turbulence could reduce the effective receiver telescope diameter of the 1-μm heterodyne lidar to <5 cm at a relatively short range of ~450 m near the ground. The observed effective telescope aperture and heterodyne detection efficiency varied during the day as the atmospheric turbulence level changed. At this time, we are not able to compare our experimental lidar data to a rigorous atmospheric turbulence and lidar detection theory which includes independently variable transmitter, receiver, and detector geometry. It is interesting to note, however, that the observed limitation of the effective receiver aperture was similar in functional form with those predictions based on the heterodyne wavefront detection theory by D. L. Fried [ Proc. IEEE 55, 57– 67 ( 1967)] and the heterodyne lidar detection theory for a fixed monostatic system by S. F. Clifford and S. Wandzura [ Appl. Opt. 20, 514– 516 ( 1981)]. We have also applied such an effective receiver aperture limitation to predict the system performance for a heterodyne Ho lidar operating at 2 μm.

© 1991 Optical Society of America

Original Manuscript: July 19, 1990
Published: June 20, 1991

Kin Pui Chan, Dennis K. Killinger, and Nobuo Sugimoto, "Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence," Appl. Opt. 30, 2617-2627 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Special Issue on Solid-State Lasers, IEEE J. Quantum Electron. QE-24 (June1988). For latest reports, see papers in Technical Digest, Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, DC, 1990).
  2. N. Menyuk, D. K. Killinger, “Atmospheric Remote Sensing of Water Vapor, HCl, and CH4 Using a Continuously Tunable Co:MgF2 Laser,” Appl. Opt. 26, 3061–3065 (1987). [CrossRef] [PubMed]
  3. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. Byvik, “Coherent Laser Radar at 1.06 μm Using Nd:YAG Lasers,” Opt. Lett. 12, 239–241 (1987). [CrossRef] [PubMed]
  4. M. J. Kavaya, S. M. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote Wind Profiling with a Solid-State Nd:YAG Coherent Lidar System,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  5. N. Sugimoto, N. Sims, K. Chan, D. K. Killinger, “Eye-Safe 2.1-μm Ho Lidar for Measuring Atmospheric Density Profiles,” Opt. Lett. 15, 302–304 (1990). [CrossRef] [PubMed]
  6. K. P. Chan, D. K. Killinger, “Short-Pulse, Coherent Doppler Nd:YAG Lidar,” Opt. Eng. 30, 49–54 (1991). [CrossRef]
  7. R. T. Menzies, R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Field,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  8. V. I. Tatarski, “The Effects of the Turbulent Atmosphere on Wave Propagation,” in IPST Catalog 5319 (National Technical Information Service, Springfield, VA 22151, 1971).
  9. J. W. Strohbehn, Ed., Laser Beam Propagation in the Atmosphere (Springer-Verlag, New York, 1978), and references therein. [CrossRef]
  10. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere (Artech House, Boston, 1987).
  11. I. Goldstein, P. A. Miles, A. Chabot, “Heterodyne Measurement of Light Propagation Through Atmospheric Turbulence,” Proc. IEEE 53, 1172–1180 (1965). [CrossRef]
  12. D. L. Fried, “Optical Heterodyne Detection of an Atmospherically Distorted Signal Wave Front,” Proc. IEEE 55, 57–67 (1967). [CrossRef]
  13. J. H. Churnside, C. M. McIntyre, “Signal Current Probability Distribution for Heterodyne Receiver in the Turbulent Atmosphere. 1: Theory,” Appl. Opt. 17, 2141–2147 (1978). [CrossRef] [PubMed]
  14. J. H. Churnside, C. M. McIntyre, “Signal Current Probability Distribution for Heterodyne Receiver in the Turbulent Atmosphere. 2: Experiment,” Appl. Opt. 17, 2148–2152 (1978). [CrossRef] [PubMed]
  15. P. A. Pincus, M. E. Fossey, J. Holmes, J. R. Kerr, “Speckle Propagation Through Turbulence: Experimental,” J. Opt. Soc. Am. 68, 760–762 (1978). [CrossRef]
  16. H. T. Yura, “Signal-to-Noise Ratio of Heterodyne Lidar Systems in the Presence of Atmospheric Turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  17. R. L. Schwiesow, R. F. Calfee, “Atmosphere Refractive Effects on Coherent Lidar Performance at 10.6 μm,” Appl. Opt. 18, 3911–3917 (1979). [CrossRef] [PubMed]
  18. J. F. Holmes, M. H. Lee, J. R. Kerr, “Effect of the Log-Amplitude Covariance Function on the Statistics of Speckle Propagation through the Turbulent Atmosphere,” J. Opt. Soc. Am. 70, 355–360 (1980). [CrossRef]
  19. S. F. Clifford, S. Wandzura, “Monostatic Heterodyne Lidar Performance: The Effect of the Turbulent Atmosphere,” Appl. Opt. 20, 514–516 (1981); “Monostatic Heterodyne Lidar Performance: The Effect of the Turbulent Atmosphere, Correction,” Appl. Opt. 20, 1502 (1981). [CrossRef] [PubMed]
  20. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and Target Detection with a Heterodyne-Reception Optical Radar,” Appl. Opt. 20, 3292–3313 (1981). [CrossRef] [PubMed]
  21. B. J. Rye, “Refractive-Turbulence Contribution to Incoherent Backscatter Heterodyne Lidar Returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  22. R. Murty, “Refractive Turbulence Effects on Truncated Gaussian Beam Heterodyne Lidar,” Appl. Opt. 23, 2498–2502 (1984). [CrossRef] [PubMed]
  23. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving Efficiency of Monostatic Pulsed Coherent Lidars. 1: Theory,” Appl. Opt. 29, 4111–4119 (1980). [CrossRef]
  24. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978).
  25. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, New York, 1975), Chap. 2, pp. 9–75. [CrossRef]
  26. N. Sugimoto, K. P. Chan, D. K. Killinger, “Video Camera Measurement of Atmospheric Turbulence Using the Telescope Image of a Distant Light Source,” Appl. Opt. 30, 365–367 (1991). [CrossRef] [PubMed]
  27. J. C. Wyngard, Y. Izumi, S. A. Collins, “Behavior of the Refractive-Index-Structure Near the Ground,” J. Opt. Soc. Am. 61, 1646–1650 (1971). [CrossRef]
  28. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar,” Appl. Opt. 22, 682–689 (1983). [CrossRef] [PubMed]
  29. S. C. Cohen, “Heterodyne Detection: Phase Front Alignment, Beam Spot Size, and Detector Uniformity,” Appl. Opt. 14, 1953–1959 (1975). [CrossRef] [PubMed]
  30. J. Y. Wang, “Detection Efficiency of Coherent Optical Radar,” Appl. Opt. 23, 3421–3427 (1984). [CrossRef] [PubMed]
  31. N. Sugimoto, K. P. Chan, D. K. Killinger, “Optimal Heterodyne Detection Array Size for 1-μm Coherent Lidar Propagation through Atmospheric Turbulence,” Appl. Opt. 30, this issue (1991). [CrossRef] [PubMed]
  32. R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric Aerosol Backscatter Measurements Using a Tunable Coherent CO2 Lidar,” Appl. Opt. 23, 2510–2517 (1984). [CrossRef] [PubMed]
  33. R. M. Hardesty, “Coherent DIAL Measurement of Range-Resolved Water Vapor Concentration,” Appl. Opt. 23, 2545–2553 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited